Table 4 Rate constants used by Thorneley and Lowe in the simulation of the kinetics of Kp nitrogenase at 23°, pH 7.4*

Rate	 :·	
constant	Value	Comment
k ₁	$^{a}5 \times 10^{7} \mathrm{M}^{-1} \mathrm{s}^{-1}$	Responsible for dilution effect
k_{-1}	$^{a}15 s^{-1}$	(Responsible for unution effect
k_2	200 s ⁻¹	Electron transfer coupled to MgATP hydrolysis
k ₃	$^{a}4.4 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$	Responsible for inhibition at high protein concentrations
k_{-3}^{b}	^a 6.4 s ⁻¹	Rate limiting when Kp2 and substrates are saturating
k_4	$3.0 \times 10^6 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Rate of reduction of Kp2 _{ox} (MgADP)2 by SO ₂ ⁻
k ₅	$^{a}4.4 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$	Responsible for inhibition of H ₂ evolution
k_{-5}	^a 6.4 s ⁻¹	when MgATP but not reductant is limiting
k_6	$1.2 \times 10^9 \mathrm{M}^{-1}\mathrm{s}^{-1}$	$S_2O_4^2 = \frac{k-6}{\frac{k}{k_0}} 2SO_2^{-1}$
k_{-6}	1.75 s^{-1}	$\int_{0}^{3204} \frac{1}{k_6} \frac{1}{23002}$
k ₇	⁶ 250 s ⁻¹	Responsible for enhanced H ₂ evolution at low e ⁻ flux
k_8	⁶ 8.0 s ⁻¹	Slow in order to maximize N ₂ binding to E ₃
<i>k</i> ₉	b.c400 s ⁻¹	Rapid H ₂ evolution from the most reduced hydridic species
k_{10}	$4 \times 10^5 M^{-1} s^{-1}$	Determined from K _m ^{N₂} at low e ⁻ flux
k_{-10}	$8 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Determined from K _i ^{H₂} at low e ⁻ flux
k_{11}	$^{\circ}2.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{s}^{-1}$	Determined from K _m ^{N2} at high e ⁻ flux
k_{-11}	$^{\rm c}3 \times 10^6~{\rm M}^{-1}~{\rm s}^{-1}$	Determined from K _i ^{H₂} at high e ⁻ flux

^{*} Reproduced from Reference 144.

Note: The difference between the values of some of the rate constants shown and those reported previously are due to the more accurate determination of k_1 .

^a Kp1-Kp2 association-dissociation rates assumed to be independent of Kp1 oxidation level.

^b H₂ evolution rates. These depend on small differences between large numbers and are subject to errors of factors of about two.

[°] Since these rate constants determine K_m 's and K_i 's, only their ratios are absolute values.