Table 4 Rate constants used by Thorneley and Lowe in the simulation of the kinetics of Kp nitrogenase at 23°, pH 7.4* | Rate | :· | | |-----------------------|---|---| | constant | Value | Comment | | k ₁ | $^{a}5 \times 10^{7} \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Responsible for dilution effect | | k_{-1} | $^{a}15 s^{-1}$ | (Responsible for unution effect | | k_2 | 200 s ⁻¹ | Electron transfer coupled to MgATP hydrolysis | | k ₃ | $^{a}4.4 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$ | Responsible for inhibition at high protein concentrations | | k_{-3}^{b} | ^a 6.4 s ⁻¹ | Rate limiting when Kp2 and substrates are saturating | | k_4 | $3.0 \times 10^6 \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Rate of reduction of Kp2 _{ox} (MgADP)2 by SO ₂ ⁻ | | k ₅ | $^{a}4.4 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$ | Responsible for inhibition of H ₂ evolution | | k_{-5} | ^a 6.4 s ⁻¹ | when MgATP but not reductant is limiting | | k_6 | $1.2 \times 10^9 \mathrm{M}^{-1}\mathrm{s}^{-1}$ | $S_2O_4^2 = \frac{k-6}{\frac{k}{k_0}} 2SO_2^{-1}$ | | k_{-6} | 1.75 s^{-1} | $\int_{0}^{3204} \frac{1}{k_6} \frac{1}{23002}$ | | k ₇ | ⁶ 250 s ⁻¹ | Responsible for enhanced H ₂ evolution at low e ⁻ flux | | k_8 | ⁶ 8.0 s ⁻¹ | Slow in order to maximize N ₂ binding to E ₃ | | <i>k</i> ₉ | b.c400 s ⁻¹ | Rapid H ₂ evolution from the most reduced hydridic species | | k_{10} | $4 \times 10^5 M^{-1} s^{-1}$ | Determined from K _m ^{N₂} at low e ⁻ flux | | k_{-10} | $8 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Determined from K _i ^{H₂} at low e ⁻ flux | | k_{11} | $^{\circ}2.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Determined from K _m ^{N2} at high e ⁻ flux | | k_{-11} | $^{\rm c}3 \times 10^6~{\rm M}^{-1}~{\rm s}^{-1}$ | Determined from K _i ^{H₂} at high e ⁻ flux | ^{*} Reproduced from Reference 144. Note: The difference between the values of some of the rate constants shown and those reported previously are due to the more accurate determination of k_1 . ^a Kp1-Kp2 association-dissociation rates assumed to be independent of Kp1 oxidation level. ^b H₂ evolution rates. These depend on small differences between large numbers and are subject to errors of factors of about two. [°] Since these rate constants determine K_m 's and K_i 's, only their ratios are absolute values.