Table 2 Properties of some glycolytic branches in tumor cells. | | AS-30D | HeLa | |--|-----------------------|-----------------------| | Glycogen metabolism | | | | PGM activity ¹ | 0.32 ± 0.1 (3) | 0.75 ± 0.2 (3) | | Km 3 _{GIP} | NM | 0.07 | | glycogen content ² | $33 \pm 30 (5)$ | 171 ± 55 (4) | | | (26 mM) ^c | (135 mM) ^c | | G1P content ³ | 0.08 ± 0.04 (3) | NM | | glycogen synthesis flux ⁴ | 2.2 ± 0.3 (3) | 2.4(2) | | glycogen degradation flux ⁴ | 1.2 (2) | $12 \pm 2 (3)$ | | Pentose phosphate pathway | | | | G6PDH activity ¹ | 0.05^{a} | 0.22a | | 6PG content ³ | 0.35 ± 0.13 (5) | 0.39 | | PPP flux ⁴ | 0.096 ± 0.03 (3) | NM | | TA activity ¹ | 0.043 ± 0.006 (3) | 0.033(2) | | TK activity ¹ | 0.010 ± 0.001 (3) | 0.037 | | Ery4P content ³ | 1 ± 0.3 (3) | 0.016 ^b | | Xyl5P content | NM | 0.016 ^b | | Triglyceride synthesis | | | | αGPDH activity ¹ | ND ^a | ND ^a | | Amino acid metabolism | | | | 3PGDH activity1 | ND | ND | | AlaTA activity ¹ | 0.046 ± 0.022 (3) | 0.012(2) | | Alanine content ³ | ND | ND | | Mitochondrial pyruvate metabolism | | | | Flux of pyruvate consumed by mitochondria ⁴ | 1.8(2) | NM | $^{^{1}}$ U (mg cytosolic protein) $^{-1}$; 2 nmol glucose equivalents (mg total cellular protein) $^{-1}$; 3 in mM; 4 nmol min $^{-1}$ (mg total cellular protein) $^{-1}$. Values were taken from a [10] and b [39]. c The glycogen concentration was calculated by assuming that 1.8 mg total cellular protein has a volume of 2.28 μ l [38]. The values are mean \pm SD and the number of independent batches of cells assayed is shown in parentheses: the absence of parenthesis indicates one preparation assayed. NM, not measured; ND, not detected.