Table III. Properties of carboxysomes from Cyanobium spp. and Synechococcus spp. cells grown at high and low CO_2 Derived properties of Cyanobium spp. and Synechococcus spp. carboxysomes based on experimentally determined carboxysome dimensions and cellular Rubisco quantities. | Property | Synechococcus spp. (β) | | Cyanobium spp. (α) | | |---|------------------------|----------------------|---------------------------|----------------------| | | High CO ₂ | Low CO ₂ | High CO ₂ | Low CO ₂ | | Carboxysome diameter (nm) ^a | 240 ± 54 (162) | 234 ± 37 (50) | 103 ± 8.9 (85) | 104 ± 9.9 (170) | | Total carboxysome volume (nm ³) ^b | 4.38×10^{6} | 4.06×10^{6} | 3.46×10^{5} | 3.57×10^{5} | | Internal carboxysome volume (nm ³) ^c | 3.81×10^{6} | 3.51×10^{6} | 2.72×10^{5} | 2.80×10^{5} | | Carboxysome surface area (nm²)b | 1.38×10^{5} | 1.31×10^{5} | 2.54×10^{4} | 2.59×10^{4} | | Surface area-volume ratio | 0.031 | 0.032 | 0.073 | 0.073 | | Rubisco active sites per carboxysome ^d | 2.49×10^{4} | 2.30×10^{4} | 1.78×10^{3} | 1.83×10^{3} | | Rubisco holoenzymes per carboxysome ^d | 4,042 | 3,732 | 288 | 297 | | Carboxysomes per cell ^e | 2.4 | 4.2 | 17.6 | 18.1 | a Carboxysome diameters were determined experimentally from electron microscopic analysis and represent the maximum cross-sectional width. Numbers are mean values \pm sp, with the number of measured carboxysomes in parentheses. b Volume and surface area of carboxysomes calculated for ideal icosahedrons of the diameters listed. Internal volumes are calculated for ideal icosahedrons assuming shell thicknesses of 4 nm for α-carboxysomes (lancu et al., 2007) and 5.5 nm for β-carboxysomes (Kaneko et al., 2006). d Rubisco quantities per carboxysome are estimated assuming that Rubisco holoenzymes occupy spheres of diameter of 12 nm and have packing densities of 74% (Kepler packing). This arrangement is a realistic packing arrangement for both α-carboxysomes and β-carboxysomes based on estimated stoichiometries for both carboxysome types (Long et al., 2011; Roberts et al., 2012). The resulting packing arrangement results in a Rubisco active site concentration of 10.9 mm within carboxysomes of both types. Reducing the volume occupied by Rubisco to 11-nm-diameter spheres increases the active site concentration within carboxysomes to 14.1 mm and reduces the estimated number of carboxysomes per cell by approximately 1.3-fold. This range of Rubisco volumes is estimated from the crystal structure of *Synechococcus* spp. PCC 6301 Rubisco (Newman and Gutteridge, 1990), which is identical to that of *Synechococcus* spp. PCC 7942. Carboxysomes per cell were calculated from modeled carboxysome volumes, assumed Rubisco packing densities (above), and Rubisco active site concentration data in Table II. - Iancu CV, Ding HJ, Morris DM, Dias DP, Gonzales AD, Martino A, Jensen GJ (2007) The structure of isolated *Synechococcus* strain WH8102 carboxysomes as revealed by electron cryotomography. J Mol Biol 372: 764–773 - Kaneko Y, Danev R, Nagayama K, Nakamoto H (2006) Intact carboxysomes in a cyanobacterial cell visualized by hilbert differential contrast transmission electron microscopy. J Bacteriol 188: 805–808 - **Long BM, Rae BD, Badger MR, Price GD** (2011) Over-expression of the β -carboxysomal CcmM protein in *Synechococcus* PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. Photosynth Res **109**: 33–45 - Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S (2012) Isolation and characterization of the *Prochlorococcus* carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol **194:** 787–795 - Newman J, Gutteridge S (1990) The purification and preliminary X-ray diffraction studies of recombinant *Synechococcus* ribulose-1,5-bisphosphate carboxylase/oxygenase from *Escherichia coli*. J Biol Chem **265**: 15154–15159