Table 1. Properties of C. reinhardtii acclimated to different light and carbon supply regimes

Changes in *C. reinhardtii* phenotype upon acclimation to different light and carbon supply regimes are shown. Data columns from left to right show cell number doubling time; ChI content per cell; ChI a/b ratio, calculated from the fitting of absorption spectra of 80% acetone-extracted pigments from cells; PSI/PSII ratio, measured based on the electrochromic shift (ECS) signal; PSI/PSII ratio, obtained by immunoblot (WB) quantification of PSAA and CP43; LHCII/PSII monomer calculations based on ChI a/b and PSI/PSII data, as described in "Materials and Methods"; and maximal quantum efficiency of PSII (F_{ν}/F_{m}). The data are averages and se derived from a minimum of two biological replicates, each with three technical replicates.

Condition	Doubling Time	Chl Content	Chl a/b	PSI/PSII ECS	PSI/PSII WB	LHCII/PSII	F_/F _m
	h	pg					
Mnl	9.0 ± 0.0	3.9 ± 0.21	2.57 ± 0.00	1.05 ± 0.34	1.00 ± 0.00	4.9	0.71 ± 0.01
Mhl	7.3 ± 0.4	2.0 ± 0.11	2.87 ± 0.03	1.13 ± 0.02	1.35 ± 0.30	4.3	0.70 ± 0.02
Pnl	25.0 ± 1.4	2.6 ± 0.02	2.55 ± 0.03	1.67 ± 0.11	1.95 ± 0.31	8	0.68 ± 0.01
Phl	22.5 ± 2.1	1.3 ± 0.02	2.57 ± 0.02	1.54 ± 0.58	1.65 ± 0.28	7.5	0.59 ± 0.00
CO2nl	8.8 ± 0.4	2.1 ± 0.12	2.56 ± 0.05	0.96 ± 0.04	1.04 ± 0.17	4.9	0.75 ± 0.01
CO2hl	4.6 ± 0.5	0.6 ± 0.02	3.00 ± 0.05	0.62 ± 0.04	0.66 ± 0.13	2.2	0.76 ± 0.01