Table 1. Rate estimates integrated over the water column at the equator in the Pacific (140°W).

Date	Conditions*	$\begin{array}{c} \textit{Prochlor-}\\ \textit{ococcus}\\ \textit{division}\\ \textit{rate}\; \mu_{cc}\\ \textit{integrated} \dagger\\ \textit{(day}^{-1}) \end{array}$	Prochlor- ococcus production integrated‡ (mg of C m ⁻² day ⁻¹)	Total production integrated§ (mg of C m ⁻² day ⁻¹)		Prochlor- ococcus (% of production integrated)	
				Net	Gross	Net	Gross
1 April 1992 8 April 1992 5 October 1992 11 October 1992 17 October 1992	Warm El Niño Warm El Niño Cold tongue Cold tongue Cold tongue	0.51 0.63 0.58 0.60 0.53	498 347 174 322 265	1033 981 1385 1843 1571	2583 2453 3463 4608 3928	48 35 13 17	19 14 5 7 7

*According to Murray et al. (11). †Estimates of integrated division rates were computed as

$$\mu_{\rm cc} = \ln \left[\int_{0}^{200} N_{1700}(z) \cdot \exp[\mu_{\rm cc}(z)] \cdot dz / \int_{0}^{200} N_{1700}(z) \cdot dz \right], \text{ where } z \text{ is the water depth, } \mu_{\rm cc}(z) \text{ is obtained from Fig. 4,}$$

and N_{1700} is the cell concentration just before division. Such a procedure, which weighs division rates by cell concentrations just before division, is more accurate than a simple depth-averaged rate. ‡Depth-integrated daily production rates for *Prochlorococcus* were computed from the estimated production at each depth, as

$$P = \int_{0}^{200} C_{\text{cell}} \cdot N_{1700}(z) \cdot \left\{ \exp[\mu_{\text{cc}}(z)] - 1 \right\} \cdot dz, \text{where } C_{\text{cell}} \text{ is the intracellular carbon content of } Prochlorococcus$$

estimated as 53 fg of C per cell (20). \$Depth-integrated daily net production rates for the total community were computed from ¹⁴C estimates (21). Gross production was obtained from net production divided by 0.4 (18).

- J. W. Murray, R. T. Barber, M. R. Roman, M. P. Bacon, R. A. Feely, *Science* 266, 58 (1994).
- M. Bender, J. Orchado, M.-L. Dickson, M. E. Carr, Eos 75, 29 (1994).
- L. Campbell, H. A. Nolla, D. Vaulot, *Limnol. Ocean-ogr.* 39, 954 (1994).
- 21. R. T. Barber, personal communication.