Table 1. Simplified pro-forma present-day oceanic fixed-N budgets [in Tg] and the unfractionated/fractionated ratio².

Process	G&S 2002	G2004	C et al. 2001	<u>C 2007</u>
Nitrogen Fixation	132 ± 41	135 ± 51	132	135+++
Benthic Denitrification	95 ± 20	180 ± 50	300 ◀	300+ ◀
UF/F Ratio	1.2	3.6	3.8 57	3.8 57
Water Column Denit.	80 ± 20	50 ± 20	150	150++
Totals (all sources&sink	(s) $+34 \pm 53$	5 ± 78	-188	-234

 $^{^1}$ G&S 2002 = Gruber and Sarmiento (2002). G 2004 = Gruber (2004). C et al. (2001) = Codispoti et al. (2001), and C 2007 = this paper. Other significant sources (in Tg N a⁻¹) include riverine inputs estimated by the above budgets as 76–80 \pm 14. Estimates for atmospheric inputs are as follows: G&S 2002 = 30 \pm 5, C et al. = 86, G 2004 = 50 & C 2007 = 30. Benthic nitrogen fixation was taken to be 15 \pm 10 in all of the above budgets, and is lumped with water column nitrogen fixation. Other sinks include burial which is 25 \pm 10 in all budgets, and N₂O loss to the atmosphere taken as 4 \pm 2 in G&S 2002 and G 2004, and as 6 in C et al. (2001), and C 2007. Some budgets suggest a loss of \sim 1 Tg N a⁻¹ due to organic-N export from the ocean.

² The arrows and the value "57" indicate that with respect to isotopic fractionation of N, this paper assumes that 38% of total water column denitrification behaves like sedimentary denitrification. Unfractionated (sediments + water)/fractionated denitrification ratios (UF/F) are shown in blue.