TABLE 3.5. Permeability of Phospholipid (± Sterol) Bilayers to Various Solutes and to Water, Corrected (Where the Permeability Coefficient P is High) for Effects of Unstirred Layers [see Stein, 1967]^a

Permeability coefficient (P/ms^{-1}) of lipid bilayers to the undissociated form (HA) and the dissociated form (A^{-}) of organic acids (N.D. = not determined)

Solute	P _{HA}	P _A -	References
Formic acid	$1.0 - 1.1 \cdot 10^{-4}$	N.D.	Walter et al. [1982], Walter and Gutknecht [1984]
Acetic acid	$0.24 - 6.6 \cdot 10^{-5}$	N.D.	Deuticke et al. [1982], Walter and Gutknecht [1984]
Propionic acid	$2.6 \cdot 10^{-4}$	N.D.	Walter and Gutknecht [1984]
Butyric acid	$6.4 - 9.5 \cdot 10^{-4}$	N.D.	Deuticke et al. [1982], Walter et al. [1982], Walter and Gutknecht [1984]
Hexanoic acid	$1.1 \cdot 10^{-2}$	N.D.	Walter and Gutknecht [1984]
Lactic acid	$5.0 \cdot 10^{-7}$	N.D.	Deuticke et al. [1982]
Maleic acid	$4.0 \cdot 10^{-7}$	$4.0 \cdot 10^{-11}$	Prestegaard et al. [1979]
Benzoic acid	$5.5 \cdot 10^{-9}$	N.D.	Walter and Gutknecht [1984]
Salicylic acid	$1.0 - 7.7 \cdot 10^{-3}$	$1.0 \cdot 10^{-9}$	Gutknecht and Tosteson [1973], Walter and Gutknecht [1984]
Indoleacetic Acid	$3.4 \cdot 10^{-5}$	$1.0 \cdot 10^{-11}$	Gutknecht and Walter [1980]

Permeability coefficient $(P/m\ s^{-1})$ of lipid bilayers to the unassociated form (B) and the associated form (BH^+) of organic bases

Solute	P _B	P_{BH+}	References
Histamine	$3.5 \cdot 10^{-7}$	very low	Gutknecht and Walter [1981a]
Theophylline	$2.9 \cdot 10^{-6}$	very low	Gutknecht and Walter [1981a]
Tryptamine	1.8 · 10 ⁻³	very low	Gutknecht and Walter [1981a]

Solute	P	Reference	
Formamide	$7.8 \cdot 10^{-7}$	Poznansky et al. [1976]	
Acetamide	$2.4 \cdot 10^{-7}$	Poznansky et al. [1976]	
Propionamide	$6.1 \cdot 10^{-7}$	Poznansky et al. [1976]	
Valeramide	$18.3 \cdot 10^{-7}$	Poznansky et al. [1976]	
Urea	$0.6 - 4.0 \cdot 10^{-8}$	Vreeman [1966], Finkelstein [1976], Poznansky et al. [1976], Orbach and Finkelstein [1980]	
Glycerol	$4.5 - 5.4 \cdot 10^{-8}$	Vreeman [1966], Orbach and Finkelstein [1980], Brown et al. [1982]	
Glucose, sorbitol, mannitol	10^{-12}	Vreeman [1966], Wood et al. [1968]	

Permeability coefficients (P/m s ⁻¹) of lipid bilayers to inorganic nonelectrolytes and weak acids		
Solute	P	References
HOH, DOH, TOH	$0.57 - 2.2 \cdot 10^{-5}$	Finkelstein [1976], Orbach and Finkelstein [1980]
HCI, HSCN	$3 \cdot 10^{-2}$	Gutknecht and Walter [1981b. 1982]
HF, HNO ₃	$0.1 - 1.0 \cdot 10^{-6}$	Gutknecht and Walter [1981c]
B(OH) ₃	$1-4\cdot 10^{-8}$	Raven [1980c], JAC Smith [personal communication]
Si(OH) ₄	10-10	Raven [1983b]
CO ₂	$3.5 \cdot 10^{-3}$	Gutknecht et al. [1977]
HgCl ₂	$1.3 \cdot 10^{-4}$	Gutknecht [1981]

TABLE 3.5. (Continued)

Permeability coefficient (P/m s ⁻¹) of lipid bilayers to inorganic ions			
Solute	P	References	
H ⁺ /OH ⁻	$0.3-20\cdot 10^{-6}$	Nichols and Deamer [1980], Nichols et al. [1980], Gould and Bell [1981], Pohl [1982], Elamrani and Blume [1983], Deamer and Nichols [1983]	
H ⁺	$0.5 - 10 \cdot 10^{-11}$	Gutknecht and Walter [1981b], Cafiso and Hubbell [1981, 1983], Nozaki and Tanford [1981]	
OH-	$1.8 \cdot 10^{-11}$	Gutknecht and Walter [1981d]	
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	$2 \cdot 10^{-12}$	Pagano and Thompson [1968], Thompson and Henn [1970]	
F ⁻ , Cl ⁻ , NO ₃ ⁻ , HCO ₃ ⁻ , SCN ⁻	$1-5\cdot 10^{-12}$	Pagano and Thompson [1968], Thompson and Henn [1970], Gutknecht and Walter [1981b,c, 1982], Gutknecht et al. [1977], Kaethner and Bangham [1977]	

The disparities in the values for $PH^+(P_{OH}^-)$ in the table may, in part, be related to transfer of H^+ across the membrane as HCl [Gutknecht and Walter, 1981b]: However, this cannot explain all of the "high" values [Deamer and Nichols, 1983]. Deamer and Nicholls [1983] suggest that the low values of P_{H+} obtained by Nozaki and Tanford [1981] are a result of the development of large diffusion potentials which decreased the driving force on H+ to a value substantially below the H+ activity difference which was used to compute PH+. Cafiso and Hubbell [1983] point out that the high values reported by Biege and Gould [1981] and Clement and Gould [1981] are probably a result of the presence of CHCl₃ in their membranes.

^aP is defined for a nonelectrolyte n by the equation

$$J_n = P_n \cdot (C_{n1} - C_{n2})$$

where $J_n = \text{flux of n (mol m}^{-2} \text{ s}^{-1})$ from phase 1 to phase 2. $C_{n1}, C_{n2} = \text{concentration of n (mol m}^{-3}) \text{ in phases } 1, 2.$ P_n = permeability coefficient to n (m s⁻¹).

P is defined for an electrolyte j[±] by the equation

$$J_{j}^{\pm} = -P_{j}^{\pm} \cdot \frac{zF\psi_{12}/RT}{1 - exp(zF\psi_{12}/RT)} (C_{j}^{\pm}{}_{1} - C_{j}^{\pm}{}_{2}exp(zF\psi_{12}/RT)$$

where $J_{j^{\pm}}=$ flux of j^{\pm} from phase 1 to phase 2 (mol m⁻² s⁻¹).

 $z = algebraic charge on j^{\pm}$.

F = Faraday's constant (J $V^{-1} mol^{-1}$).

 $R = gas constant (J mol^{-1} {}^{0}K^{-1}).$

T = temperature (K).

 ψ_{12} = electrical potential of phase 1 relative to phase 2 (V). $C_{j\pm 1}, C_{j\pm 2}$ = concentration of j^{\pm} (mol m⁻³) in phases 1, 2. $P_{j^{\pm}}$ = permeability coefficient to j^{\pm} (m s⁻¹).