TABLE 3.5. Permeability of Phospholipid (± Sterol) Bilayers to Various Solutes and to Water, Corrected (Where the Permeability Coefficient P is High) for Effects of Unstirred Layers [see Stein, 1967]^a Permeability coefficient (P/ms^{-1}) of lipid bilayers to the undissociated form (HA) and the dissociated form (A^{-}) of organic acids (N.D. = not determined) | Solute | P _{HA} | P _A - | References | |-------------------|----------------------------|----------------------|---| | Formic acid | $1.0 - 1.1 \cdot 10^{-4}$ | N.D. | Walter et al. [1982], Walter and Gutknecht [1984] | | Acetic acid | $0.24 - 6.6 \cdot 10^{-5}$ | N.D. | Deuticke et al. [1982], Walter and Gutknecht [1984] | | Propionic acid | $2.6 \cdot 10^{-4}$ | N.D. | Walter and Gutknecht [1984] | | Butyric acid | $6.4 - 9.5 \cdot 10^{-4}$ | N.D. | Deuticke et al. [1982], Walter
et al. [1982], Walter and
Gutknecht [1984] | | Hexanoic acid | $1.1 \cdot 10^{-2}$ | N.D. | Walter and Gutknecht [1984] | | Lactic acid | $5.0 \cdot 10^{-7}$ | N.D. | Deuticke et al. [1982] | | Maleic acid | $4.0 \cdot 10^{-7}$ | $4.0 \cdot 10^{-11}$ | Prestegaard et al. [1979] | | Benzoic acid | $5.5 \cdot 10^{-9}$ | N.D. | Walter and Gutknecht [1984] | | Salicylic acid | $1.0 - 7.7 \cdot 10^{-3}$ | $1.0 \cdot 10^{-9}$ | Gutknecht and Tosteson [1973], Walter and Gutknecht [1984] | | Indoleacetic Acid | $3.4 \cdot 10^{-5}$ | $1.0 \cdot 10^{-11}$ | Gutknecht and Walter [1980] | Permeability coefficient $(P/m\ s^{-1})$ of lipid bilayers to the unassociated form (B) and the associated form (BH^+) of organic bases | Solute | P _B | P_{BH+} | References | |--------------|------------------------|-----------|------------------------------| | Histamine | $3.5 \cdot 10^{-7}$ | very low | Gutknecht and Walter [1981a] | | Theophylline | $2.9 \cdot 10^{-6}$ | very low | Gutknecht and Walter [1981a] | | Tryptamine | 1.8 · 10 ⁻³ | very low | Gutknecht and Walter [1981a] | | Solute | P | Reference | | |--------------------------------|---------------------------|--|--| | Formamide | $7.8 \cdot 10^{-7}$ | Poznansky et al. [1976] | | | Acetamide | $2.4 \cdot 10^{-7}$ | Poznansky et al. [1976] | | | Propionamide | $6.1 \cdot 10^{-7}$ | Poznansky et al. [1976] | | | Valeramide | $18.3 \cdot 10^{-7}$ | Poznansky et al. [1976] | | | Urea | $0.6 - 4.0 \cdot 10^{-8}$ | Vreeman [1966], Finkelstein [1976], Poznansky et al. [1976], Orbach and Finkelstein [1980] | | | Glycerol | $4.5 - 5.4 \cdot 10^{-8}$ | Vreeman [1966], Orbach and Finkelstein [1980],
Brown et al. [1982] | | | Glucose, sorbitol,
mannitol | 10^{-12} | Vreeman [1966], Wood et al. [1968] | | | Permeability coefficients (P/m s ⁻¹) of lipid bilayers to inorganic nonelectrolytes and weak acids | | | |--|----------------------------|---| | Solute | P | References | | HOH, DOH,
TOH | $0.57 - 2.2 \cdot 10^{-5}$ | Finkelstein [1976], Orbach and Finkelstein [1980] | | HCI, HSCN | $3 \cdot 10^{-2}$ | Gutknecht and Walter [1981b. 1982] | | HF, HNO ₃ | $0.1 - 1.0 \cdot 10^{-6}$ | Gutknecht and Walter [1981c] | | B(OH) ₃ | $1-4\cdot 10^{-8}$ | Raven [1980c], JAC Smith [personal communication] | | Si(OH) ₄ | 10-10 | Raven [1983b] | | CO ₂ | $3.5 \cdot 10^{-3}$ | Gutknecht et al. [1977] | | HgCl ₂ | $1.3 \cdot 10^{-4}$ | Gutknecht [1981] | TABLE 3.5. (Continued) | Permeability coefficient (P/m s ⁻¹) of lipid bilayers to inorganic ions | | | | |---|---------------------------|---|--| | Solute | P | References | | | H ⁺ /OH ⁻ | $0.3-20\cdot 10^{-6}$ | Nichols and Deamer [1980],
Nichols et al. [1980], Gould
and Bell [1981], Pohl [1982],
Elamrani and Blume [1983],
Deamer and Nichols [1983] | | | H ⁺ | $0.5 - 10 \cdot 10^{-11}$ | Gutknecht and Walter [1981b],
Cafiso and Hubbell [1981,
1983], Nozaki and Tanford
[1981] | | | OH- | $1.8 \cdot 10^{-11}$ | Gutknecht and Walter [1981d] | | | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ ,
Cs ⁺ | $2 \cdot 10^{-12}$ | Pagano and Thompson [1968],
Thompson and Henn [1970] | | | F ⁻ , Cl ⁻ , NO ₃ ⁻ ,
HCO ₃ ⁻ , SCN ⁻ | $1-5\cdot 10^{-12}$ | Pagano and Thompson [1968],
Thompson and Henn [1970],
Gutknecht and Walter
[1981b,c, 1982], Gutknecht et
al. [1977], Kaethner and
Bangham [1977] | | The disparities in the values for $PH^+(P_{OH}^-)$ in the table may, in part, be related to transfer of H^+ across the membrane as HCl [Gutknecht and Walter, 1981b]: However, this cannot explain all of the "high" values [Deamer and Nichols, 1983]. Deamer and Nicholls [1983] suggest that the low values of P_{H+} obtained by Nozaki and Tanford [1981] are a result of the development of large diffusion potentials which decreased the driving force on H+ to a value substantially below the H+ activity difference which was used to compute PH+. Cafiso and Hubbell [1983] point out that the high values reported by Biege and Gould [1981] and Clement and Gould [1981] are probably a result of the presence of CHCl₃ in their membranes. ^aP is defined for a nonelectrolyte n by the equation $$J_n = P_n \cdot (C_{n1} - C_{n2})$$ where $J_n = \text{flux of n (mol m}^{-2} \text{ s}^{-1})$ from phase 1 to phase 2. $C_{n1}, C_{n2} = \text{concentration of n (mol m}^{-3}) \text{ in phases } 1, 2.$ P_n = permeability coefficient to n (m s⁻¹). P is defined for an electrolyte j[±] by the equation $$J_{j}^{\pm} = -P_{j}^{\pm} \cdot \frac{zF\psi_{12}/RT}{1 - exp(zF\psi_{12}/RT)} (C_{j}^{\pm}{}_{1} - C_{j}^{\pm}{}_{2}exp(zF\psi_{12}/RT)$$ where $J_{j^{\pm}}=$ flux of j^{\pm} from phase 1 to phase 2 (mol m⁻² s⁻¹). $z = algebraic charge on j^{\pm}$. F = Faraday's constant (J $V^{-1} mol^{-1}$). $R = gas constant (J mol^{-1} {}^{0}K^{-1}).$ T = temperature (K). ψ_{12} = electrical potential of phase 1 relative to phase 2 (V). $C_{j\pm 1}, C_{j\pm 2}$ = concentration of j^{\pm} (mol m⁻³) in phases 1, 2. $P_{j^{\pm}}$ = permeability coefficient to j^{\pm} (m s⁻¹).