Table 3. Permeability coefficients of monosaccharides "measured with planar lecithin bilayers at 26 ± 2 °C | Sugar | Duration
of flux
measurement
(min) | Permeability
coefficient
(cm sec ⁻¹) | Mean value ± sp | |-------------------------|---|--|--| | D-fructose ^b | 100 | 0.66×10 ⁻⁹ | $\begin{cases} 9.3 \pm 0.3 \\ \times 10^{-10} \text{ cm sec}^{-1} \end{cases}$ | | D-fructose | 100 | 1.09×10^{-9} | | | D-fructose | 145 | 1.03 × 10 ⁻⁹ | | | D-glucose e | 180 | 1.49×10^{-10} | $ \begin{cases} 1.1 \pm 0.3 \\ \times 10^{-10} \text{ cm sec}^{-1} \end{cases} $ | | D-glucose | 240 | 1.04×10^{-10} | | | D-glucose | 240 | 0.77×10^{-10} | | The sugar concentrations in the rear compartment (Fig. 1) at time t=0 were 12.8 mm. Since the sugar concentration in the front compartment was zero at time t=0, net fluxes were measured under gradient conditions. b Calculated from flux curves given in Fig. 5. c Calculated from flux measurements in duplicate.