TABLE 1 Peak-to-peak headgroup thicknesses $h_{\rm pp}$, elastic area $K_{\rm A}$, $K_{\rm app}$, and bending $k_{\rm c}$ moduli for fluid phase bilayers made from phosphatidylcholines | Lipid | $h_{\mathrm{pp}}\ (\mathrm{nm})$ | $K_{\rm A}$ (mN/m) | $\frac{K_{\rm app}}{({\rm mN/m})}$ | $k_{\rm c} \ (10^{-19} \ {\rm J})$ | |-----------------------|----------------------------------|--------------------|------------------------------------|------------------------------------| | diC13:0 | 3.41 ± 0.05 | 239 ± 15 | 153 ± 13 | 0.56 ± 0.07 | | diC14:0 | 3.52 ± 0.06 | 234 ± 23 | 150 ± 14 | 0.56 ± 0.06 | | C18:0/1 | 4.07 ± 0.06 | 235 ± 14 | 208 ± 10 | 0.90 ± 0.06 | | C18:1/0 | _ | 230 ± 10 | 207 ± 8 | 0.92 ± 0.07 | | diC18:1 _{c9} | 3.69 ± 0.04 | 265 ± 18 | 237 ± 16 | 0.85 ± 0.10 | | diC18:1 _{t9} | _ | 229 ± 12 | 208 ± 10 | 1.03 ± 0.11 | | diC18:1 _{c6} | _ | 235 ± 17 | 209 ± 14 | 0.90 ± 0.09 | | C18:0/2 | _ | 241 ± 22 | 193 ± 17 | 0.46 ± 0.07 | | diC18:2 | 3.49 ± 0.03 | 247 ± 21 | 190 ± 18 | 0.44 ± 0.07 | | diC18:3 | 3.43 ± 0.06 | 244 ± 32 | 159 ± 19 | 0.38 ± 0.04 | | diC20:4 | 3.44 ± 0.07 | 250 ± 10 | 183 ± 8 | 0.44 ± 0.05 | | diC22:1 | 4.37 ± 0.05 | 263 ± 10 | 244 ± 8 | 1.2 ± 0.15 | $K_{\rm app}$ are the slopes of tension versus apparent area dilation measured by micropipette pressurization of vesicles in the high-tension regime; $K_{\rm A}$ are the direct elastic stretch moduli obtained after correction for smoothing of thermal undulations. Peak-to-peak headgroup thicknesses $h_{\rm pp}$ were measured by x-ray diffraction of multibilayers equilibrated at 98% relative humidity. All values are given as mean \pm SD. (Thicknesses $h_{\rm pp}$ for dimyristoyl (diC14:0) and diarachidonoyl (diC20:4) PC bilayers are taken from Petrache et al. (1998b) and McIntosh (1995), respectively.)