Table 2. Passive HCO₃⁻ fluxes in four diatoms

Diatom	f_b (cm ³ /s)	$f_{\rm b-BL}$ (cm ³ /s)	f_{c-M} (cm ³ /s)	P _b (cm/s)
P. tricornutum T. weissflogii T. pseudonana T. oceanica	$0.4 \pm 1.1 \times 10^{-11}$ $1.3 \pm 1.2 \times 10^{-10}$ $1.3 \pm 2.0 \times 10^{-12}$ $0.7 \pm 1.7 \times 10^{-11}$	4.6×10^{-8} 8.9×10^{-8} 3.0×10^{-8} 4.4×10^{-8}	$0.4 \pm 1.1 \times 10^{-11}$ $1.3 \pm 1.2 \times 10^{-10}$ $1.3 \pm 2.0 \times 10^{-12}$ $0.7 \pm 1.7 \times 10^{-11}$	$0.4 \pm 1.0 \times 10^{-5}$ $2.9 \pm 2.7 \times 10^{-5}$ $2.5 \pm 3.9 \times 10^{-6}$ $0.6 \pm 1.5 \times 10^{-5}$

The HCO_3^- influx, described by the cellular transfer coefficient f_b (\pm SD), is limited by diffusion through the boundary layer (f_{b-BL}) and passage through the membrane (f_{b-m}). The cytoplasmic membrane permability to HCO_3^- ($P_b \pm$ SD) is derived from f_{b-m} . At least four replicate measurements were made on each organism. Errors were propagated based on the error in f_b measurements.