Table 2. Passive HCO₃⁻ fluxes in four diatoms | Diatom | f_b (cm ³ /s) | $f_{\rm b-BL}$ (cm ³ /s) | f_{c-M} (cm ³ /s) | P _b (cm/s) | |--|---|--|---|---| | P. tricornutum
T. weissflogii
T. pseudonana
T. oceanica | $0.4 \pm 1.1 \times 10^{-11}$ $1.3 \pm 1.2 \times 10^{-10}$ $1.3 \pm 2.0 \times 10^{-12}$ $0.7 \pm 1.7 \times 10^{-11}$ | 4.6×10^{-8}
8.9×10^{-8}
3.0×10^{-8}
4.4×10^{-8} | $0.4 \pm 1.1 \times 10^{-11}$ $1.3 \pm 1.2 \times 10^{-10}$ $1.3 \pm 2.0 \times 10^{-12}$ $0.7 \pm 1.7 \times 10^{-11}$ | $0.4 \pm 1.0 \times 10^{-5}$ $2.9 \pm 2.7 \times 10^{-5}$ $2.5 \pm 3.9 \times 10^{-6}$ $0.6 \pm 1.5 \times 10^{-5}$ | The HCO_3^- influx, described by the cellular transfer coefficient f_b (\pm SD), is limited by diffusion through the boundary layer (f_{b-BL}) and passage through the membrane (f_{b-m}). The cytoplasmic membrane permability to HCO_3^- ($P_b \pm$ SD) is derived from f_{b-m} . At least four replicate measurements were made on each organism. Errors were propagated based on the error in f_b measurements.