TABLE 2. Parameters related to lacZ expression from P_{spc} in strain SL106^a | | | 1 | spc | | | | | | |---|--|---|---|----------|----------|----------|----------|----------| | Parameter | Symbol | Unit ^b | Interpolated value at the indicated μ (τ) ^c | | | | | | | | | | 0.6 (100) | 1.0 (60) | 1.5 (40) | 2.0 (30) | 2.5 (24) | 3.0 (20) | | Total protein ^d | P_t /OD | 10 ¹⁶ aa/OD ₄₆₀ | 58 | 55 | 51 | 48 | 45 | 40 | | Total RNA ^d | R_{ℓ}/OD | 10 ¹⁶ nt/OD ₄₆₀ | 3.3 | 3.8 | 4.4 | 5.3 | 6.3 | 6.7 | | β-Gal sp act ^e | β-Gal/OD | $(\Delta A_{420}/h)/OD_{600}$ | 280 | 195 | 140 | 120 | 105 | 80 | | β-Gal sp act ^f | β-Gal/P, | $(\Delta A_{420}/h)/10^{16}$ aa | 3.0 | 2.2 | 1.7 | 1.6 | 1.5 | 1.3 | | lacZ mRNA/total RNAg | R_{lac}/R_{t} | Relative units | 1.20 | 1.18 | 1.15 | 1.10 | 1.05 | 1.00 | | lacZ mRNA translation rate ^h | $(d\beta$ -Gal/ $dt)/R_{lac}$ | Relative units | 0.31 | 0.32 | 0.30 | 0.30 | 0.29 | 0.26 | | Stable RNA synthesis rate ⁱ | r_s/r_t | Fraction | 0.41 | 0.52 | 0.68 | 0.78 | 0.85 | 0.90 | | Stable RNA synthesis rate ^j | r_s /OD | 10 ¹⁴ nt/min/OD ₄₆₀ | 2.7 | 5.1 | 8.8 | 14.4 | 21.2 | 27.3 | | mRNA synthesis rate ^k | r_m/r_t | Fraction | 0.59 | 0.48 | 0.32 | 0.22 | 0.15 | 0.10 | | mRNA synthesis rate ¹ | r_m /OD | 10 ¹⁴ nt/min/OD ₄₆₀ | 3.9 | 4.7 | 4.2 | 4.1 | 3.7 | 3.0 | | mRNA avg life ^m | τ,,, | min | 1.9 | 2.0 | 2.1 | 2.2 | 2.3 | 2.4 | | mRNA/OD ⁿ | $R_m^{\prime\prime}$ /OD | 10 ¹⁴ nt/OD ₄₆₀ | 7.4 | 9.4 | 8.8 | 9.0 | 8.6 | 7.3 | | mRNA/total RNA° | R_m/R_t | Fraction | 0.022 | 0.025 | 0.020 | 0.017 | 0.014 | 0.0011 | | lacZ mRNA/total mRNA ^p | $R_{lac}^{\prime\prime\prime}/\dot{R}_{m}$ | Relative units | 54 | 47 | 57 | 65 | 76 | 92 | | Protein synthesis rate/total RNA ^q | $(dP/dt)/R_t$ | aa/min/nt | 0.12 | 0.17 | 0.20 | 0.21 | 0.21 | 0.21 | | Peptide chain elongation rate ^r | c_n | aa polymerized/active ribosome | 13 | 18 | 22 | 22 | 22 | 22 | | Distribution of ribosomes on mRNAs | d_r | nt/ribosome | 143 | 160 | 129 | 108 | 88 | 70 | | Avg protein synthesis rate/mRNA ^t | $(dP/dt)/R_m$ | aa/min/nt | 5.5 | 6.8 | 10.0 | 12.4 | 15.1 | 19.0 | | mRNA translation rate" | $(di/dt)/R_m$ | translations/min/mRNA | 16 | 20 | 30 | 37 | 45 | 57 | - ^a Values are interpolated from observed data to match growth rate values in reference 4, Tables 2 and 3. - b aa, amino acids. - aa, animo actors. γ μ, growth rate, expressed as doublings per hour; τ, doubling time in minutes. ^d Per OD₆₀₀ unit of culture mass (2). ^e Per OD₆₀₀ unit (Fig. 1) (17). The value at 0.6 doubling/h has been obtained by extrapolation and is consistent with similar data from E. coli K-12 strains, which grow more slowly in glycerol minimal medium than B/r strains (19). - For amount of protein, calculated as $(B-Gal/Ob_{600})$ ($1.6 P/OD_{460}$); the factor 1.6 converts OD_{460} units into OD_{600} units (2). § Amount of lacZ mRNA per amount of total RNA in relative units, normalized to the hybridization value observed in LB medium at 3.0 doublings/h, which was - set at 1.0 (17). ^h Calculated as $(\ln 2/\tau) \cdot (\beta \text{Gal}/P) \cdot (P_i/R_i)/(R_{lac}/R_i)$. ^c Rate of stable RNA (rRNA plus tRNA) synthesis as a fraction of total RNA synthesis rate (30; Table 3 of reference 4). The value at 3.0 doublings/h was obtained - by extrapolation. Per OD_{460} unit of culture mass; calculated as $(\ln 2/\tau) \cdot 0.98 \cdot 1.2 \cdot R_i$. The factors 0.98 and 1.2 reflect the facts that 98% of total RNA is stable RNA (about 2% is mRNA; see values for R_m/R_t below) and 20% of stable RNA precursors are rapidly degraded spacers. As a fraction of total RNA synthesis rate, calculated as $1 r_s/r_t$. Per OD_{460} unit of culture mass; calculated as $r_s/OD \cdot (r_m/r_t)/(r_s/r_t)$. The average functional life of mRNA is assumed to be equal to the average functional life of lacZ mRNA (18) (see the text). For *E. coli* B/r in glucose minimal - The average functional me of mRNA has previously been estimated from pulse-labeling data to be about 1 min (1). The average life of total mRNA has previously been estimated from pulse-labeling data to be about 1 min (1). The average functional mRNA has previously been estimated from pulse-labeling data to be about 1 min (1). Calculated as $(R_m/OD)/(R_v/OD)$, Calculated as $(R_m/OD)/(R_v/OD)$, Calculated as $(R_{loc}/R_v)/(R_m/R_v)$. Calculated as $(R_{loc}/R_v)/(R_w/R_v)$, Calcu - (14% is tRNA, and 2% is mRNA); 0.85 is the fraction of total ribosomes that is active at any given time; and 60 is the number of seconds per minute (see Table 3 in reference 4 for details). - ³ Average distance in mRNA nucleotides between translating ribosomes for average (bulk) mRNA; calculated as $60 \cdot c_p/[(dP/dt)/R_m]$. ⁴ Calculated as $[(dP/dt)/R_t]/(R_m/R_t)$. - "Average rate of initiation (i) of translation (initiations per minute) per mRNA molecule; calculated as $3 \cdot (dP/dt)/R_m = 60 \cdot 3 \cdot c_p/d_r$, where the factor 3 represents the coding ratio (3 nt per amino acid) and the factor 60 is the number of seconds in a minute.