TABLE 2. Parameters related to lacZ expression from P_{spc} in strain SL106^a

		1	spc					
Parameter	Symbol	Unit ^b	Interpolated value at the indicated μ (τ) ^c					
			0.6 (100)	1.0 (60)	1.5 (40)	2.0 (30)	2.5 (24)	3.0 (20)
Total protein ^d	P_t /OD	10 ¹⁶ aa/OD ₄₆₀	58	55	51	48	45	40
Total RNA ^d	R_{ℓ}/OD	10 ¹⁶ nt/OD ₄₆₀	3.3	3.8	4.4	5.3	6.3	6.7
β-Gal sp act ^e	β-Gal/OD	$(\Delta A_{420}/h)/OD_{600}$	280	195	140	120	105	80
β-Gal sp act ^f	β-Gal/P,	$(\Delta A_{420}/h)/10^{16}$ aa	3.0	2.2	1.7	1.6	1.5	1.3
lacZ mRNA/total RNAg	R_{lac}/R_{t}	Relative units	1.20	1.18	1.15	1.10	1.05	1.00
lacZ mRNA translation rate ^h	$(d\beta$ -Gal/ $dt)/R_{lac}$	Relative units	0.31	0.32	0.30	0.30	0.29	0.26
Stable RNA synthesis rate ⁱ	r_s/r_t	Fraction	0.41	0.52	0.68	0.78	0.85	0.90
Stable RNA synthesis rate ^j	r_s /OD	10 ¹⁴ nt/min/OD ₄₆₀	2.7	5.1	8.8	14.4	21.2	27.3
mRNA synthesis rate ^k	r_m/r_t	Fraction	0.59	0.48	0.32	0.22	0.15	0.10
mRNA synthesis rate ¹	r_m /OD	10 ¹⁴ nt/min/OD ₄₆₀	3.9	4.7	4.2	4.1	3.7	3.0
mRNA avg life ^m	τ,,,	min	1.9	2.0	2.1	2.2	2.3	2.4
mRNA/OD ⁿ	$R_m^{\prime\prime}$ /OD	10 ¹⁴ nt/OD ₄₆₀	7.4	9.4	8.8	9.0	8.6	7.3
mRNA/total RNA°	R_m/R_t	Fraction	0.022	0.025	0.020	0.017	0.014	0.0011
lacZ mRNA/total mRNA ^p	$R_{lac}^{\prime\prime\prime}/\dot{R}_{m}$	Relative units	54	47	57	65	76	92
Protein synthesis rate/total RNA ^q	$(dP/dt)/R_t$	aa/min/nt	0.12	0.17	0.20	0.21	0.21	0.21
Peptide chain elongation rate ^r	c_n	aa polymerized/active ribosome	13	18	22	22	22	22
Distribution of ribosomes on mRNAs	d_r	nt/ribosome	143	160	129	108	88	70
Avg protein synthesis rate/mRNA ^t	$(dP/dt)/R_m$	aa/min/nt	5.5	6.8	10.0	12.4	15.1	19.0
mRNA translation rate"	$(di/dt)/R_m$	translations/min/mRNA	16	20	30	37	45	57

- ^a Values are interpolated from observed data to match growth rate values in reference 4, Tables 2 and 3.
- b aa, amino acids.

- aa, animo actors.

 γ μ, growth rate, expressed as doublings per hour; τ, doubling time in minutes.

 ^d Per OD₆₀₀ unit of culture mass (2).

 ^e Per OD₆₀₀ unit (Fig. 1) (17). The value at 0.6 doubling/h has been obtained by extrapolation and is consistent with similar data from E. coli K-12 strains, which grow more slowly in glycerol minimal medium than B/r strains (19).
- For amount of protein, calculated as $(B-Gal/Ob_{600})$ ($1.6 P/OD_{460}$); the factor 1.6 converts OD_{460} units into OD_{600} units (2).

 § Amount of lacZ mRNA per amount of total RNA in relative units, normalized to the hybridization value observed in LB medium at 3.0 doublings/h, which was
- set at 1.0 (17).

 ^h Calculated as $(\ln 2/\tau) \cdot (\beta \text{Gal}/P) \cdot (P_i/R_i)/(R_{lac}/R_i)$.

 ^c Rate of stable RNA (rRNA plus tRNA) synthesis as a fraction of total RNA synthesis rate (30; Table 3 of reference 4). The value at 3.0 doublings/h was obtained
- by extrapolation.

 Per OD_{460} unit of culture mass; calculated as $(\ln 2/\tau) \cdot 0.98 \cdot 1.2 \cdot R_i$. The factors 0.98 and 1.2 reflect the facts that 98% of total RNA is stable RNA (about 2% is mRNA; see values for R_m/R_t below) and 20% of stable RNA precursors are rapidly degraded spacers.

 As a fraction of total RNA synthesis rate, calculated as $1 r_s/r_t$.

 Per OD_{460} unit of culture mass; calculated as $r_s/OD \cdot (r_m/r_t)/(r_s/r_t)$.

 The average functional life of mRNA is assumed to be equal to the average functional life of lacZ mRNA (18) (see the text). For *E. coli* B/r in glucose minimal
- The average functional me of mRNA has previously been estimated from pulse-labeling data to be about 1 min (1).

 The average life of total mRNA has previously been estimated from pulse-labeling data to be about 1 min (1).

 The average functional mRNA has previously been estimated from pulse-labeling data to be about 1 min (1).

 Calculated as $(R_m/OD)/(R_v/OD)$,

 Calculated as $(R_m/OD)/(R_v/OD)$,

 Calculated as $(R_{loc}/R_v)/(R_m/R_v)$.

 Calculated as $(R_{loc}/R_v)/(R_w/R_v)$,

 Calcu

- (14% is tRNA, and 2% is mRNA); 0.85 is the fraction of total ribosomes that is active at any given time; and 60 is the number of seconds per minute (see Table 3 in reference 4 for details).
 - ³ Average distance in mRNA nucleotides between translating ribosomes for average (bulk) mRNA; calculated as $60 \cdot c_p/[(dP/dt)/R_m]$. ⁴ Calculated as $[(dP/dt)/R_t]/(R_m/R_t)$.
- "Average rate of initiation (i) of translation (initiations per minute) per mRNA molecule; calculated as $3 \cdot (dP/dt)/R_m = 60 \cdot 3 \cdot c_p/d_r$, where the factor 3 represents the coding ratio (3 nt per amino acid) and the factor 60 is the number of seconds in a minute.