Table 1 Parameters pertaining to the synthesis rates of ribosomes and RNA polymerase in exponentially growing E coli B/r as a function of growth rate at 37 °C.

At r (min) and µ (doublings/h):										
Parameter	Symbol	Units	$\tau \rightarrow 100$ $\mu \rightarrow 0.6$	1.0	1.5	2.0	2.5	3,0	Observed parameter(s)	Footnote
RNAP synthesizing rRNA	Ψ_r	%	21	31	48	59	68	74	Ψ_{s}, f_{t}	ь
rRNA chain elong.	$C_{\mathbf{f}}$	Nucl/s	85	85	85	85	85	85	Indirect	c
RNAP activity	β_p	%	15,5	16.8	17.6	21.9	28.2	36,2	r_s , r_m , c_s , c_m , N_p	d
RNAP/total protein	$\alpha_{\rm p}$	%	0.90	1.10	1,30	1.45	1,55	1.60	$\alpha_{\rm p}$	e
Peptide chain elong.	Cp	aa resid./s	13	18	21	22	22	22	Indirect	r
Ribosome activity	β_{τ}	%	85	85	85	85	85	85	Indirect	g
Ribos, prot/tot, prot.	α_r	%	7.7	9.2	11.6	15.0	18.8	22.7	$\alpha_{\rm r}$	h
Ribosomes/cell	N,	103 Ribos./cell	8.0	14.9	25.9	43.9	61.4	72.9	R_C, f_s, f_t	1
RNAP molec./cell	N _p	103 RNAP/cell	1.8	3,5	5.7	8.4	10.0	10,2	α_p, P_C	j
RNAP/ribosome	N_p/N_r	Factor	0.23	0.24	0.22	0.19	0.16	0.14	N_p, N_r	k
RNAP prot/rib.prot.	$\alpha_p \alpha_r$	Factor	0.12	0.12	0.11	0.10	0.08	0.07	α_p, α_r	1
Factor (Equation (1a))	a	See text	0.030	0.049	0.078	0.121	0.177	0.248	Ψ_{r} , c_{r} , β_{p}	m
Factor (Equation (2a))	b	See text	0.0016	0.0027	0.0038	0.0044	0.0047	0.0048	α_p, c_p, β_r	n
Calc, growth rate	μ	Doublings/h	0.6	1.0	1.5	2.0	2.5	3.0	a, b	0
Change in a	fa	Factor	1.0	1.6	2.6	4.0	5.9	8.3	a. a ₁	P
Change in b	f _b	Factor	1.0	1.7	2.4	2.8	2.9	3.0	b, b ₁	q
Change in µ	fu	Factor	1.0	1.7	2.5	3.3	4.2	5.0	μ, μ1	r

^{*} Fraction of active RNA polymerase synthesizing stable RNA (from Table 3 in [3], originally calculated: $\Psi_s = 1/(1 + [1/(r_s/r_t) - 1](c_s/c_m))$, using values for r_s/r_b c_s and c_m shown in the same Table).

- P Change in a, $f_a = a(\mu > 0.6)/a (\mu = 0.6)$.
- ^q Change in b, $f_b = b(\mu > 0.6)/b$ ($\mu = 0.6$). ^r Change in μ , f_{μ} =($\mu > 0.6$)/0.6.

Fraction of active RNA polymerase synthesizing rRNA, $\Psi_r = (1 - f_t)\Psi_s$, where f_t is the fraction of stable RNA that is tRNA = 0.14 (Table 1 in [3]).

Stable RNA (or rRNA) chain elongation rate (from Table 3 in [3]; originally determined from the accumulation rm-terminal 5S-rRNA or tRNA after stopping transcription initiation with rifampicin).

d Fraction of total RNA polymerase that is actively transcribing (from Table 3 in [3]; originally calculated using the relationship: $\beta_p = (r_m/c_s + r_m/c_m)/N_p$, using values for r_s , r_m c_s, c_m, and N_p in the same Table).

Fraction of total protein that is core RNA polymerase (from Table 3 in [3]; determined from the \(\beta \) and \(\beta \) subunit content measured after sodium dodecyl sulfate-gel electrophoresis).

Peptide chain elongation rate (from Table 3 in [3]; calculated from the amount of protein per cell, Pc, and the number of active ribosomes per cell, \(\textit{\eta}_T \) \(\textit{\eta}_T \) in the same of the number of active ribosomes per cell, \(\textit{\eta}_T \) in the same of the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(\textit{\eta}_T \) in the number of active ribosomes per cell, \(

relationship $c_p = (\ln 2/\tau) \cdot P_C/(\beta_r \cdot N_r)$, as explained in the same table). Fraction of total ribosomes active in polypeptide synthesis (from Table 3 in [3], originally measured as fraction of ribosomes in polysomes, with a correction for active 70S

ribosomes, as explained in the same table).

h Fraction of total protein that is ribosomal protein (from Table 3 in [3], originally determined as the fraction of labeled protein in 30S and 50S ribosomal particles).

Number of ribosomes per cell (from Table 3 in [3], determined from the amount of total RNA per cell, R_C, the fraction of total RNA that is stable RNA, f₈ = 0.98, the fraction of stable RNA that is tRNA, $f_t = 0.14$ and the number of RNA nucleotides per 70S ribosome, nucl/rib = 4566; $N_t = R_C f_t (1 - f_t) \int nucl./rib$.

J Number of core RNA polymerase per cell [from Table 3 in [3], calculated from the amount of protein per cell. P_{G} the fraction of total protein that is RNA polymerase, a_p (this table, footnote °), and the number of amino acid residues per core RNA polymerase, a_p [0].

k Number of RNA polymerase molecules per ribosome, $N_p|N_t$, using the values for N_p and N_t in this table (footnotes a and b).

RNA polymerase protein per ribosomal protein, $\alpha_p|\alpha_p$, using the values for α_p and α_t in this table (footnotes a and b).

Factor α in Equation (1a): $\alpha - (\Psi_t c_t \beta_p)/(\text{nuc}/\text{nib})$, using the values for Ψ_t , c_t and β_p in this table (footnotes b , c , and d) and the number of nucleotides per 70 ribosome, (nuc/

rib) = 4566.

ⁿ Factor b in Equation (2a): $b = (\alpha_p c_p \beta_r)/(aa/pol)$, using the values for $\alpha_p c_p$ and β_r in this table (footnotes e , f , and g) and the number of amino acid residues per core RNA polymerase, (aa/pol) = 3707.

^o Calculated growth rate (doublings/h), using Equation (7): $\mu = (60/\ln 2)\sqrt{ab}$ with the values for a and b in this table (footnotes m and n).