Table 2. Parameters of length distributions obtained from batch- and chemostat-cultured cells, prepared by agar filtration | Culture | τ (min) | \hat{L} (μ m) | CV ^a (%) | L_0^b (μ m) | Cells showing con-
striction | | | Cell width (µm) | | |--------------------|---------|----------------------|---------------------|--------------------|---------------------------------|----------------------------|-----------|-----------------|-------------------------| | | | | | | % | L_c^c $(\mu \mathbf{m})$ | CV
(%) | 2R
(μm) | SD ^d
(µm) | | B/r A | | | | - | | | | | | | Batch ^e | 160 | $1.4 (1,025)^{f}$ | 23 | 1.0 | 14 | 1.9 | 8 | 0.65 | $0.04 (144)^f$ | | Batch ^o | 126 | 1.6 (632) | 24 | 1.1 | 14 | 2.2 | 8 | 0.64 | 0.03 (69) | | Chemostat | 175 | 1.5 (974) | 23 | 1.1 | 9 | 2.1 | 8 | 0.56 | 0.04 (112) | | B/r K | | , , | | | | | | | | | Batche. g | 180 | 2.2 (1,140) | 24 | 1.6 | 6 | 3.1 | 11 | 0.46 | 0.04 (119) | | Chemostat | 175 | 2.4 (955) | 25 | 1.6 | 8 | 3.2 | 15 | 0.52 | 0.04 (127) | ^a CV, Coefficient of variation. ^b The length of newborn cells (L_0) was estimated from the distributions using the formula (11): $L_0 = \frac{1}{2}$ $(L_{\min} + \frac{1}{2} L_{\max})$, where L_{\min} and L_{\max} are, respectively, the minimal and maximal cell lengths observed. ^c L_c , the average length of cells showing constriction, is usually somewhat smaller than $2 \times L_0$. ^d SD, Standard deviation. ^e See Fig. 1 for length distributions. ^f The number in parentheses indicates the number of cells measured. ⁹ Cultures used for analysis of nuclear separation in critical-point-dried cells (cf. Table 4).