Table 1. Oxygen permeability coefficients for PtdChocholesterol membranes | Membrane | Temp. | δ _H , Å | δ _P , Å | P _M , cm/s | |---------------------------|-------|--------------------|--------------------|-----------------------| | [Myr ₂]PtdCho | | | | | | 0 mol % cholesterol | 8 | 28.2 | 6.9 | 5.3 ± 0.4 | | | 18 | 30.3 | 7.1 | 12.2 ± 0.4 | | | 29 | 25.2 | 5.4 | 125 ± 5.3 | | | 45 | 24.7 | 5.3 | 232 ± 12.5 | | 50 mol % cholesterol | 8 | 35.3 | 6.9 | 5.7 ± 0.9 | | | 18 | 35.3 | 7.1 | 10.4 ± 1.6 | | | 29 | 35.3 | 5.4 | 22.7 ± 4.1 | | | 45 | 35.3 | 5.3 | 53.0 ± 6.1 | | [Ole ₂]PtdCho | | | | | | 0 mol % cholesterol | 10 | 24.5 | 3.8 | 33.0 ± 1.9 | | | 30 | 24.5 | 3.8 | 114 ± 4.9 | | 50 mol % cholesterol | 10 | 30.6 | 3.8 | 13.7 ± 1.6 | | | 30 | 30.6 | 3.8 | 54.6 ± 5.6 | The thicknesses of the hydrocarbon layer and of the polar headgroup region (including the glycerol ester groups) are designated $\delta_{\rm H}$ and δ_P . They were calculated for [Myr₂]PtdCho, following Cornell and Separovic (27), from published membrane thickness data (22), the surface area of the PtdCho moiety (28), and the average volume of CH₂ groups [assuming vol(CH₃) = $2 \text{ vol}(CH_2)$] as given in ref. 17. Because cholesterol does not affect δ_P (29), its effect on δ_H could be estimated from data on the thickness of cholesterol-containing membranes (22, 30, 31). A similar procedure was used for [Ole₂]PtdCho with the following additional assumptions: (i) $vol(CH_2) = vol(CH)$. (ii) The average volume of CH₂ obtained for [Myr₂]PtdCho at 60°C can be used at both 10°C and 30°C. This is justified by the observation that well above the main phase transition the average volumes asymptotically approach a constant temperature and chain-lengthindependent value (17, 22, 28). (iii) The thickness and surface area of [Ole₂]PtdCho at 0 and 50 mol % cholesterol can be estimated from membrane thickness of egg yolk PtdCho (30, 32).