Table 1. Oxygen permeability coefficients for PtdChocholesterol membranes

Membrane	Temp.	δ _H , Å	δ _P , Å	P _M , cm/s
[Myr ₂]PtdCho				
0 mol % cholesterol	8	28.2	6.9	5.3 ± 0.4
	18	30.3	7.1	12.2 ± 0.4
	29	25.2	5.4	125 ± 5.3
	45	24.7	5.3	232 ± 12.5
50 mol % cholesterol	8	35.3	6.9	5.7 ± 0.9
	18	35.3	7.1	10.4 ± 1.6
	29	35.3	5.4	22.7 ± 4.1
	45	35.3	5.3	53.0 ± 6.1
[Ole ₂]PtdCho				
0 mol % cholesterol	10	24.5	3.8	33.0 ± 1.9
	30	24.5	3.8	114 ± 4.9
50 mol % cholesterol	10	30.6	3.8	13.7 ± 1.6
	30	30.6	3.8	54.6 ± 5.6

The thicknesses of the hydrocarbon layer and of the polar headgroup region (including the glycerol ester groups) are designated $\delta_{\rm H}$ and δ_P . They were calculated for [Myr₂]PtdCho, following Cornell and Separovic (27), from published membrane thickness data (22), the surface area of the PtdCho moiety (28), and the average volume of CH₂ groups [assuming vol(CH₃) = $2 \text{ vol}(CH_2)$] as given in ref. 17. Because cholesterol does not affect δ_P (29), its effect on δ_H could be estimated from data on the thickness of cholesterol-containing membranes (22, 30, 31). A similar procedure was used for [Ole₂]PtdCho with the following additional assumptions: (i) $vol(CH_2) = vol(CH)$. (ii) The average volume of CH₂ obtained for [Myr₂]PtdCho at 60°C can be used at both 10°C and 30°C. This is justified by the observation that well above the main phase transition the average volumes asymptotically approach a constant temperature and chain-lengthindependent value (17, 22, 28). (iii) The thickness and surface area of [Ole₂]PtdCho at 0 and 50 mol % cholesterol can be estimated from membrane thickness of egg yolk PtdCho (30, 32).