TABLE 1 Oxidation states of *R. palustris* biomass and growth substrates and the H₂ yield from each substrate | | | | H ₂ yield (mol H ₂ /100 mol | |----------------------|----------------------------|------------------------------|---| | Compound | Formula | Oxidation state ^b | organic C consumed) ^c | | Fumarate | $C_4H_4O_4$ | +1 | 18 ± 3^{d} | | Succinate | $C_4H_6O_4$ | +0.5 | 23 ± 1 | | Acetate | $C_2H_4O_2$ | 0 | 21 ± 3 | | Biomass ^a | $CH_{1.8}N_{0.18}O_{0.38}$ | -0.5 | | | Butyrate | $C_4H_8O_2$ | -1 | 41 ± 10 | ^a Based on the elemental composition of *R. palustris* 42OL (25). ^b Values were determined for each carbon atom as described previously (7, 26) and then averaged by dividing the sum by the number of carbon atoms. ^c NifA* cultures were grown in minimal medium with NH₄⁺ as the nitrogen source. Values are averages from 3 to 5 biological replicates ± standard deviations (SD) based on samples taken during early exponential growth. Values are normalized for organic C consumed to account for the different carbon contents between acetate and the other substrates. ^d Calculated by grouping fumarate and malate as a single metabolite [i.e., dH_2/d (fumarate + malate) × 100/4 carbon atoms]. The H_2 yield from fumarate consumed alone would give a value of 12 \pm 2.