This figure is re-drawn and updated from Codispoti et al. (2005). The suite of reactions supporting canonical denitrification are shown by the red (nitrification) and dark blue (canonical denitrification) arrows. The green arrows indicate a denitrification process that is associated with nitrification. This process produces N₂O and might also produce N₂. During these three processes, the intermediates, N_2O , NO, and NO_2^- can leave the cell and be changed between nitrifiers and denitrifiers. The NO₂ produced can also support the anammox pathway (yellow arrows) in which NH₄⁺ is oxidized to N2 and NO2 is reduced to N2. A review of the literature also suggests that oxidation of organic-N or NH₄⁺ by NO₃⁻, iodate (IO_3^-), oxidized metals such as Mn (III&IV), Fe (III) and various oxidized trace metals can also produce N_2 (light blue arrow). Not shown is the possibility that the oxidation of Mn (II) by NO₃ may also produce N₂ (Luther et al., 1997). Intermediate chemicals involved in the anammox reaction (e.g. hydrazine) are omitted for simplicity.