Table 1. Overview of quantitative PPR features

Reported numbers of PPRs per cell				
PPRs/cell	PPR type	Organism	Method	Refs
10 ⁴	Proteorhodopsin	Pelagibacter ubique	Laser flash induced spectroscopy	[80]
2.4×10 ⁴	Proteorhodopsin	Uncultivated γ-proteobacterium EBAC31A08	Laser flash induced spectroscopy	[47]
4×10 ⁴	Proteorhodopsin	Shewanella oneidensis MR-1 (engineered)	Spectroscopy	[7]
$5.22 \times 10^4 \pm 3.07 \times 10^4$	Proteorhodopsin	Winogradskyella sp. PG-2	Spectroscopy	[81]
Reported proton-pumpi	ng rates per PPR			
Proton- pumping rate (H+/PPR/min)	PPR type	Organism	Method	Refs
204	Bacteriorhodopsin	Halobacterium salinarum	Liposomes	[82]
124±73	Proteorhodopsin	Winogradskyella sp. PG-2	Cells	[81]
30	Xanthorhodopsin (Gloeobacter rhodopsin)	Escherichia coli (engineered)	Spheroplast vesicles ^a	[83]
Estimate for a feasible	PPR proton flux per cell			
Assumed PPRs per cell ^b		Assumed proton- pumping rate per PPR (H*/PPR/min) ^c	Estimated proton-pumping rate per cell	
			(H*/cell/min)	(mmol H*/g DW/h)d
10 ⁵		300	6.0×10 ⁷	10

^aFor this measurement, Gloeobacter rhodopsin was reconstituted with retinal, but without its antenna pigment, echinenone

- 7 Johnson, E.T. et al. (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl. Environ. Microbiol. 76, 4123–4129
 - 47 Béja, O. et al. (2001) Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789
- 80 Giovannoni, S.J. et al. (2005) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85
- 81 Yoshizawa, S. et al. (2012) Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ. Microbiol. 14, 1240–1248
- 82 Mogi, T. et al. (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 85, 4148–4152
- 83 Kawanabe, A. et al. (2009) Engineering an inward proton transport from a bacterial sensor rhodopsin. J. Am. Chem. Soc. 131, 16439–16444

bAn ~100% higher number of PPRs per cell than the highest value reported in literature for natural hosts is assumed to be feasible by PPR overexpression in, for example, E. ∞ li.

^{°50%} higher proton flux per PPR than reported in literature is assumed to be feasible at high light intensities.

^dA cell dry weight (DW) of 3×10⁻¹³ g DW/cell is assumed for *E. coli* (http://bionumbers.hms.harvard.edu//bionumber.aspx?id=103904&ver=16).