Table 1 Observed and expected biomass production and CO₂ release by *B. napus* embryos in culture | Metabolic sink | Percentage of
carbon observed | Percentage of carbon expected by conventional pathways | |--|----------------------------------|--| | Oil | 49.7 ± 2.8 | <44.9* | | Protein, starch, cell wall, etc. | 32.7 ± 2.3 | 32.7 | | CO ₂ released | 17.6 ± 2.2 | >22.4* | | Ratio of carbon in oil to CO ₂ released | 2.9 ± 0.3 | <2.0 | | Ratio of carbon in oil to CO ₂ released | 2.9 ± 0.3 | <2.0 | Aseptically isolated embryos in the early phase of storage accumulation were grown in liquid culture for 3 days at a light intensity of $50\,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$, with glucose, sucrose, glutamate and alanine as ^{14}C -labelled substrates. Standard deviations are given for n=5 experiments. ^{*} Assuming that CO_2 is produced only for oil synthesis (PDH reaction), the carbon fractions of oil and CO_2 are expected to be in the ratio 2:1. This value is a minimum because, in addition to PDH, the OPPP and the TCA cycle produce CO_2 (see the text).