Table II. Nucleo-cytoplasmic flux of dextrans in cultured rat liver cells | Abbreviation of dextran | Mean mol.mass
kd | Diffuson coefficient ^a 10 ⁻⁸ cm ² /s | Stokes radius ^b
Å | Rate constant ^c | Mobile fraction | n ^c | |-------------------------|---------------------|---|---------------------------------|----------------------------|-----------------|----------------| | FD3 | 2.9 ^d | 97.8 ± 6.0 ^d | 22.0 ^d | 0.1885 ± 0.0822 | 0.69 ± 0.09 | 22 | | FD10 | 10.5 | 75.7 ± 2.5 | 28.3 | 0.0487 ± 0.0191 | 0.69 ± 0.14 | 24 | | FD20 | 17.5 | 65.1 ± 6.5 | 33.0 | 0.0196 ± 0.0067 | 0.76 ± 0.24 | 16 | | FD40 | 41.0 | 46.3 ± 4.6 | 46.4 | -0.0014 ± 0.0052 | | 18 | | FD70 | 62.0 | 39.0 ± 2.6 | 55.1 | 0.0007 ± 0.0021 | | 11 | | FD150 | 156.9 | 23.7 ± 1.3 | 90.7 | | | | ^a1 μ M solution in 7 mM sodium phosphate buffer, pH 7.4. ^bCalculated according to radius $a = (kT)/(6\pi\eta D)$, where k = Boltzmann's constant, T = absolute temperature, and $\eta =$ solvent viscosity. ^cMean \pm S.D. of n measurements; in the case of FD40 and FD70 the calculation was based on an assumed mobile fraction of 1.0. ^dFD3 may occur as a dimer in solution as discussed in the text.