Table II. Nucleo-cytoplasmic flux of dextrans in cultured rat liver cells

Abbreviation of dextran	Mean mol.mass kd	Diffuson coefficient ^a 10 ⁻⁸ cm ² /s	Stokes radius ^b Å	Rate constant ^c	Mobile fraction	n ^c
FD3	2.9 ^d	97.8 ± 6.0 ^d	22.0 ^d	0.1885 ± 0.0822	0.69 ± 0.09	22
FD10	10.5	75.7 ± 2.5	28.3	0.0487 ± 0.0191	0.69 ± 0.14	24
FD20	17.5	65.1 ± 6.5	33.0	0.0196 ± 0.0067	0.76 ± 0.24	16
FD40	41.0	46.3 ± 4.6	46.4	-0.0014 ± 0.0052		18
FD70	62.0	39.0 ± 2.6	55.1	0.0007 ± 0.0021		11
FD150	156.9	23.7 ± 1.3	90.7			

^a1 μ M solution in 7 mM sodium phosphate buffer, pH 7.4. ^bCalculated according to radius $a = (kT)/(6\pi\eta D)$, where k = Boltzmann's constant, T = absolute temperature, and $\eta =$ solvent viscosity. ^cMean \pm S.D. of n measurements; in the case of FD40 and FD70 the calculation was based on an assumed mobile fraction of 1.0. ^dFD3 may occur as a dimer in solution as discussed in the text.