Table 1. Mean P_{50} values for haemoglobins of 12 inbred strains with differing alleles at Hba and Hbb

(Determinations were by the Hem-o-scan (H) or the tonometer (T) method. P_{50} was measured at 37 °C.)

allele	strain a	$egin{array}{c} ext{number} \ ext{tested} \ \ ext{llele}: Hbb^s \end{array}$	method	$\frac{\overline{P_{50}} \pm \text{s.d.}}{\text{mmHg}}$
Hba^a	C57BL/Go C57BL/6By	20 23 20	H T H	49.2 ± 2.6 47.4 ± 2.2 46.0 ± 3.4
Hba^b	CXBD	20	Н	47.5 ± 1.5
Hba^c	SWR/J	20 10	$_{\rm T}^{\rm H}$	47.5 ± 2.9 45.4 ± 1.8
Hba^d	SM/J	20 8	$_{ m T}^{ m H}$	45.8 ± 2.7 45.4 ± 2.4
Hba^f	CE/J	20	Н	45.9 ± 2.7
	a	$\mathrm{llele} \colon Hbb^d$		
Hba^a	CXBG 129/Sv	$\begin{array}{c} 20 \\ 20 \end{array}$	$_{ m H}$	48.0 ± 3.0 43.6 ± 2.1
Hba^b	BALB/eBy	20 10	$_{ m T}^{ m H}$	48.5 ± 3.6 46.2 ± 1.0
Hba^c	C3H/He//Lac	20 15	$_{ m T}^{ m H}$	45.4 ± 2.6 44.6 ± 1.7
Hba^d	CBA/CaJ	20	H	42.0 ± 1.9
Hba^f	AKR/J	20 10	$_{ m T}^{ m H}$	41.9 ± 1.9 43.4 ± 2.1