Table III. Influence of the NAD/NADH ratio on the thermodynamic feasibility of glycolysis. CEN.PK 113-7A:mtlD, aerobic, glucose-limited, $D = 0.1 \text{ h}^{-1}$ With total With cytosolic free Strain and conditions NAD/NADH NAD/NADH 0.23 FBP (mM) 3PG (mM) 0.41^{a} 3.06^{b} ATP (mM) 0.72^{b} ADP (mM) 43^b Pi (mM) Total NAD/NADH 7.5 Cytosolic free NAD/NADH 101/320 assuming cytosolic pH 7.0/6.5 $\Delta_r G'$ (kJ/mol) at pH' 7.0/6.5 +12/+17-1.3/-1.4 Concentrations were converted to mM using the factor 2.38 mL_{cell}/g_{DW} (Theobald et al., 1997). The cytosolic free NAD/NADH was calculated from the steady-state NAD/NADH \times 10^{pH-7.0} ratio of 101, assuming the cytosolic pH is between 6.5 and 7.0 (see Results Section). Gibbs energies of formation of the metabolites at pH' 7.0 and 6.5, $T=25^{\circ}$ C and I=0.25 M were obtained from Alberty (2003). The Gibbs energy of reaction was calculated for the overall reaction: FBP +2 NAD+2 ADP+2 Pi \rightarrow 2 3PG+2 ATP+2 NADH. A reaction is feasible if $\Delta_r G' \leq 0$. ^aCalculated from the concentration of 2PG + 3PG assuming equilibrium of phosphoglycerate mutase, with $\Delta_{\rm r}G'^{\circ}=5.9$ kJ/mol (Alberty, 2003). ^bTaken from Wu et al. (2006).