Table 1. In vitro comparison of λ P_R and x3

	P_{R}	x3
k _{on}	$6.7 \times 10^6 \mathrm{M}^{-1}\mathrm{sec}^{-1}$	$6.2 \times 10^4 \mathrm{M}^{-1} \mathrm{sec}^{-1}$
k ₂	$1 \times 10^{-2} \mathrm{sec^{-1}}$	$2 \times 10^{-3} \mathrm{sec^{-1}}$
$k_{\mathrm{off}}(k_{-2})$	$3.7 \times 10^{-5} \mathrm{sec^{-1}}$	$4.0 \times 10^{-5} \mathrm{sec^{-1}}$
K_{I}	$6.7 imes 10^8 \mathrm{M}^{-1}$	$3.1 \times 10^7 \mathrm{M}^{-1}$
K_{II}	270	50
$K_{\mathbf{o}}$	$1.8 \times 10^{11} \mathrm{M}^{-1}$	$1.6 \times 10^9 \mathrm{M}^{-1}$

Values for the kinetic constants k_2 and $k_{\rm on}$ were obtained from the intercepts (intercept = $1/k_2$) and the slopes ($1/S = k_1k_2/k_{-1} = k_{\rm on}$) of Fig. 2. $k_{\rm off}$ was determined by the poly[d(A-T)] challenge techniques described in *Materials and Methods* and in Fig. 3. Values for $k_{\rm off}$ determined by heparin challenge (50 $\mu \rm g/ml$) are $4.3 \times 10^{-5} \, \rm sec^{-1}$ for P_R and $3.9 \times 10^{-5} \, \rm sec^{-1}$ for x3. The equilibrium constants were calculated from the ratios $K_{\rm I} = k_{\rm on}/k_2$, $K_{\rm II} = k_2/k_{\rm off}$, $K_{\rm o} = k_{\rm on}/k_{\rm off}$.