Table 3. In vitro comparison between a strong and a weak T7 promoter | would I i promoter | | | |--|----------------------|----------------------| | | A2 | D | | Kinetic constants: | | | | $k_{\rm on}\left(\! rac{k_1k_2}{k_{-1}}\!\!\right),{ m M}^{-1}{ m sec}^{-1}$ | >9 × 10 ⁶ | 9.6×10^5 | | k_{off} (k_{-2}) , sec^{-1} | 1.7×10^{-4} | 3.3×10^{-5} | | k_2 , \sec^{-1} | 4×10^{-2} | 2.4×10^{-2} | | Apparent equilibrium constants: | | | | $K_{\rm I},{ m M}^{-1}$ | $>2 \times 10^{8}$ | 4.1×10^{7} | | K_{II} | 2.4×10^2 | 7.2×10^2 | | K_{o}, M^{-1} | $>5 \times 10^{10}$ | 3.0×10^{10} | The kinetic constants $k_{\rm on}$ and k_2 were evaluated from the slopes and intercepts of Fig. 2. $k_{\rm off}$ was determined by Cech and McClure (18). The equilibrium constants were calculated from the ratios $k_{\rm on}/k_2$ for $K_{\rm I}$, $k_2/k_{\rm off}$ for $K_{\rm II}$, and $k_{\rm on}/k_{\rm off}$ for $K_{\rm o}$.