Table 3. In vitro comparison between a strong and a weak T7 promoter

would I i promoter		
	A2	D
Kinetic constants:		
$k_{\rm on}\left(\!rac{k_1k_2}{k_{-1}}\!\!\right),{ m M}^{-1}{ m sec}^{-1}$	>9 × 10 ⁶	9.6×10^5
k_{off} (k_{-2}) , sec^{-1}	1.7×10^{-4}	3.3×10^{-5}
k_2 , \sec^{-1}	4×10^{-2}	2.4×10^{-2}
Apparent equilibrium constants:		
$K_{\rm I},{ m M}^{-1}$	$>2 \times 10^{8}$	4.1×10^{7}
K_{II}	2.4×10^2	7.2×10^2
K_{o}, M^{-1}	$>5 \times 10^{10}$	3.0×10^{10}

The kinetic constants $k_{\rm on}$ and k_2 were evaluated from the slopes and intercepts of Fig. 2. $k_{\rm off}$ was determined by Cech and McClure (18). The equilibrium constants were calculated from the ratios $k_{\rm on}/k_2$ for $K_{\rm I}$, $k_2/k_{\rm off}$ for $K_{\rm II}$, and $k_{\rm on}/k_{\rm off}$ for $K_{\rm o}$.