TABLE 2. Growth of *S. cerevisiae* at pH 6.1 on different nitrogen sources

Nitrogen source ^a	Concentration (mM) of nitrogen source	Doubling time (min)		
		Wild type ^b	$\Delta mep1 \ \Delta mep2 \ \Delta mep3^b$	Δvph1
Glutamate	10	160	160	230
Proline	10	200	200	410
Arginine	2.5	160	170	180
Urea	5	270	270	450
NH₄Cl	20	160	175	205
	5	160	290	210
	1	175	>700	215

^a Cells were grown in medium 164 with glucose (3%) as the carbon source and different nitrogen sources at the concentrations indicated. Strains were 23344c (wild type), 31019b ($\Delta mep1 \ \Delta mep2 \ \Delta mep3$) (35), and NCM3243 ($\Delta vph1$).

^b Final ODs of strains 23344c and 31019b were 13 and 13 on glutamate, 12 and 13 on proline, 11.5 and 11.5 on arginine, 14 and 13.5 on urea, 16 and 16 on 20 mM NH₄Cl, 10 and 7 on 5 mM NH₄Cl, and 1.3 and 0.4 on 1 mM NH₄Cl.