Table II. Growth enhancements in response to elevated CO2 reported in different reviews

Wang (2007) primarily focused on the differences in CO_2 responses between single-species populations and multiple-species communities that invariably showed lesser responses. Only the findings from single-species populations are shown here.

Observation	CO ₂ Enhancement	Source
	%	
Fast-growing herbaceous plants	+59	Poorter and Navas (2003)
Slow-growing herbaceous plants	+25	Poorter and Navas (2003)
All herbaceous plants	+45	Poorter and Navas (2003)
Woody plants	+48	Poorter and Navas (2003)
Low-nutrient-grown plants	+25	Poorter and Navas (2003)
Low-temperature-grown plants	+27	Poorter and Navas (2003)
Herbaceous populations	+29	Wang (2007)
Woody populations	+35	Wang (2007)
Unfertilized populations	+10	Wang (2007)
Heavily fertilized populations	+28	Wang (2007)
Dry matter production	+20	Ainsworth and Long (2005)
Grassland biomass	+12	Lee at al. (2010)
Forest growth	+23	Norby et al. (2005)

Poorter H, Navas ML (2003) Plant growth and competition at elevated CO₂: on winners, losers and functional groups. New Phytol 157: 175–198

Wang X (2007) Effects of species richness and elevated carbon dioxide on biomass accumulation: a synthesis using meta-analysis. Oecologia **152**: 595–605

Ainsworth EA, Long SP (2005) What have we learned from 15 years of freeair CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol 165: 351–371

Lee M, Manning P, Rist J, Power SA, Marsh C (2010) A global comparison of grassland biomass responses to CO₂ and nitrogen enrichment. Philos Trans R Soc Lond B Biol Sci 365: 2047–2056

Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, et al (2005) Forest response to elevated CO₂ is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102: 18052–18056