Table 3. Absence and presence of genes associated with DNA repair in bacteria with small genomes and low GC content

Species	ung	mutM	mutY	Genome size, Mbp	GC content, %
Carsonella ruddii	_	_	_	0.16	17
Wigglesworthia glossinidia brevipalpis	+	_	_	0.69	22
Buchnera aphidicola Sg	*	_	+	0.64	25
Blochmannia floridanus	+	_	+	0.70	27
Fusobacterium nucleatum ATCC 25586	+	_	_	2.17	27
Borrelia burgdorfheri B31	+	_	_	1.52	28
Ehrlichia ruminantium Gardel	_	+	_	1.50	28
Rickettsia prowazekii Madrid E	_	_	_	1.11	29
Mycoplasma genitalium G-37	+	+	_	0.58	32
Baumannia cicadellinicola	+	+	_	0.68	33
Wolbachia pipientis wBM	_	+	_	1.08	34

The ung, mutM, and mutY genes are widespread among members of the major bacterial phyla, whereas mug and vsr genes are present only in a smaller number of species. A gene was considered absent if no annotated gene with the same function was found and no homologues were found in BLAST searches with a cutoff of $P < 10^{-6}$ using the S. typhimurium sequence and excluding the mutY homologue nth. *Pseudogene.