Table S5. Genetic parameters for E. coli growing at 2 doub/h, 37°C. See also footnotes in Table S1 and S1.2 for further explanations. | Gene class | | Units | r-protein | bulk | rrn | |----------------------|---|------------|--------------|------------------------------------|--------------| | m ^h | Map location | MU (min) | see footnote | 191 uniformly
distributed genes | see footnote | | V_i^{max} | Maximum transcription initiation rate | ini/min | 33 ª | 2.01 ^d | 110ª | | U_i^{max} | Maximum translation initiation rate | ini/min | - | 80 ª | - | | $K_{m,i}$ | Promoter-RNAp holoenzyme binding affinity | molec/cell | 405 ° | 405 ° | 708¹ | | $L_{m,i}$ | RBS-30S ribosome subunit binding affinity | molec/cell | - | 13261 8 | - | | $T_{1/2,i}^{flin}$ | mRNA half-life | min | - | 6.8 ° | - | | L_i | Gene class length | base pairs | 21252 a | 1000 a | 6623ª | | c_p | Peptide chain elongation rate | aa/sec | 20 b | 20 b | - | | Ci | RNA chain elongation rate | nuc/sec | 52 b | 1.87 ^f | 85 b | | | 1 | | | - | | ^a See footnote e Table S1. r-protein and rrm maximum transcription initiation rates are given in Table S4. - g 30S ribosome subunit binding affinity was estimated by finding the c_{ribo} and $L_{m,bulk}$ that minimize the mean square error between the predicted and observed WT cell state at 2 doub/h (Table S2), given $n_0 = 2.80*10^6$ molec/WT cell (see S1.1.1 for example at 2.5 doub/h). The estimated cost was $c_{ribo} \approx 38$ bulk protein per ribosome. n_0 was chosen so that the predicted cost is the cost that gives the best fit for the data of Asai et al.. See main text for further explanations regarding c_{ribo} . - ^h r-protein and rrn map locations are given in Table S1. The number of bulk genes was calculated as explained in footnote d of Table S1 (with D_r and D_{ps} for the calculation of D_{bulk} given in Table S4). Gene concentrations are calculated according to the formulae given in Table S1 footnote d with μ_0 =2.0 doub/h, D_{rm} (2 doub/h) = 27 copies per cell (Table S4), $D_{r-protein}$ (2 doub/h) = 27/7 copies per cell (c.f. Table S4) and D_{bulk} (2 doub/h) \cong 571 copies per cell. - ⁱ The binding affinity for the rrn gene class, $K_{m,rm}$, was calculated as explained in Table S1 footnote g, where free RNAp concentration, $n_{RNAp,free}$, is given in Table S2 and i_{rrn} , the number of initiations per rrn operon for 2 doub/h, is given in table 3 b See table 3 in [3]. By redefining c_p to include 30S subunits bound to the RBS we obtain $20 \rightarrow 19.1$ aa/sec. Also see footnote k in Table S1. ^c $K_m(2 \text{ doub/h}; \text{ molec/cell}) = K_m(2.5 \text{ doub/h}; \text{ molec/cell})V_{cell}(2 \text{ doub/h})/V_{cell}(2.5 \text{ doub/h}), \text{ where values for } K_m \text{ and } V_{cell} \text{ are taken from Tables S1 and S2 respectively.}$ ^dV^{max} for the bulk promoter is calculated according to data from Table S4- see footnote e in Table S1 for formula. ^e Based on total mRNA half-life measurement for LB broth at 37°C [5] (see Table S1 footnote i). ^f Bulk mRNA chain elongation rate, c_{bulk} , was calculated according to data from Table S4- see footnote 1 in Table S1 for formula. By redefining c_r and c_{ps} to include RNAp bound to the promoter we obtain c_{bulk} =1.78 nuc/sec. See footnote 1, Table S1.