TABLE 2. Free energies and typical organisms of methanogenesis reactions

Reaction	$\Delta \mathit{G}^{\circ\prime}$ (kJ/mol CH ₄)	Organisms
I. CO ₂ -type		
$4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$	-135	Most methanogens
$4 \text{ HCOOH} \rightarrow \text{CH}_4 + 3 \text{ CO}_2 + 2 \text{ H}_2\text{O}$	-130	Many hydrogenotrophic methanogens
$CO_2 + 4$ isopropanol $\rightarrow CH_4 + 4$ acetone $+ 2 H_2O$	-37	Some hydrogenotrophic methanogens
$4 \text{ CO} + 2\text{H}_2\text{O} \rightarrow \text{CH}_4 + 3 \text{ CO}_2$	-196	Methanothermobacter and Methanosarcina
II. Methylated C1 compounds		
$4 \text{ CH}_3\text{OH} \rightarrow 3 \text{ CH}_4 + \text{CO}_2 + 2 \text{ H}_2\text{O}$	-105	Methanosarcina and other methylotrophic
		methanogens
$CH_3OH + H_2 \rightarrow CH_4 + H_2O$	-113	Methanomicrococcus blatticola and Methanosphaera
$2 (CH_3)_2 - S + 2 H_2O \rightarrow 3 CH_4 + CO_2 + 2 H_2S$	-49	Some methylotrophic methanogens
$4 \text{ CH}_3\text{-NH}_2 + 2 \text{ H}_2\text{O} \rightarrow 3 \text{ CH}_4 + \text{CO}_2 + 4 \text{ NH}_3$	-7 5	Some methylotrophic methanogens
$2 (CH_3)_2 - NH + 2 H_2O \rightarrow 3 CH_4 + CO_2 + 2 NH_3$	-73	Some methylotrophic methanogens
$4 (CH_3)_3 - N + 6 H_2O \rightarrow 9 CH_4 + 3 CO_2 + 4 NH_3$	-74	Some methylotrophic methanogens
$4 \text{ CH}_3 \text{NH}_3 \text{Cl} + 2 \text{ H}_2 \text{O} \rightarrow 3 \text{ CH}_4 + \text{CO}_2 + 4 \text{ NH}_4 \text{Cl}$	-74	Some methylotrophic methanogens
III. Acetate		-
$CH_3COOH \rightarrow CH_4 + CO_2$	-33	Methanosarcina and Methanosaeta

Source: Modified from Hedderich and Whitman¹ and Zinder.⁴³

 $^{^{}a}$ The standard changes in free energies were calculated from the free energy of formation of the most abundant ionic species at pH 7. For instance, CO₂ is HCO₃⁻ + H⁺ and HCOOH is HCOO⁻ + H⁺.