TABLE IV Experimental measurements of the rate of activation of catalytic subunits of PDE per Rh* | Species | T
(°C) | [GTP]
(μM) | $f_{m{\Phi}}$ | ν _{RP}
(PDE* s ⁻¹
per Rh*) | Reference | |---------------------|-----------|---------------|--------------------|--|-----------| | 1. Frog
2. Frog, | 21 | 130 | < 10 ⁻⁵ | 155 | [203] | | Toad | 21 | 125 | < 10 - 5 | 140 | [120] | | 3. Toad | 24 | 1000 | $< 10^{-5}$ | 135 | [11] | Each of these investigations employed pH-electrode measurements of proton production by the PDE-catalysed cyclic GMP hydrolysis reaction, cyclic GMP \leftrightarrow 5'GMP + H⁺ (p $K_a = 6.5$), in a suspension of rod disc membranes; the basic methodology is described in Ref. 203. In these experiments flashes isomerizing fractions f_{ϕ} of the rhodopsin, such that $f_{\Phi} < 10^{-5}$ (in frog and toad disc membrane suspensions) produce cyclic GMP hydrolysis curves whose steadystate rates are a linear function of f_{Φ} . Specifically, the time course of the rate of proton production is well described by the general form $V = V_p[1 - \exp(-t/\tau)]$, where $\tau = 2-5$ s when only GTP is present, and V_p is the peak hydrolytic velocity for a flash isomerizing a fraction f_{Φ} of the rhodopsin, and the peak hydrolytic velocity obeys the relation $V_p = V_{\text{max}} [1 - \exp(-f_{\Phi} N_D)]$, where f_{Φ} is the fraction of rhodopsin isomerized, N_D is the 'domain size' (typically 50000 to 90000 rhodopsins), and at room temperature V_{max} is typically 8-12 mol cGMP s⁻¹ per mol total Rh in the reaction cuvette. This value of V_{max} (per mol total rhodopsin in the reaction volume) may be converted to $2k_{cat}$, the value per holo-PDE by dividing by the ratio of PDE/rhodopsin approx. 1/150 in amphibia (Table I), to give about 2000 s⁻¹ (see Table V). From the two relations above, the rate ν_{RP} of PDE catalytic subunit activation at early times and for dim flashes is found to be $2(1/150)(N_D/\tau)$ PDE* subunits s⁻¹ per Rh*; this formula was used to derive the values in Table IV.