Table 1. Experimental conditions and metabolic states | Expt | Nutritional state | Additions to the perfusate substrate-free perfusion | | Period
of infusion | Metabolic state of the liver at freeze fixation (60 min of perfusion) glycogenolysis, glycolysis from glycogen | |----------|-------------------|---|------------------------|-----------------------|--| | F
F-S | fed rat | | | | | | | fed rat | glucose
lactate
pyruvate | 5 mM
2 mM
0.2 mM | 0 – 60 min | 'resting state'
diminished glycogenolysis and glycolysis | | F-E | fed rat | ethanol | 2 mM | 36 – 60 min | mitochondrial oxidation of reducing equivalents
derived from cytosolic ethanol oxidation,
highly reduced state of NAD systems,
inhibition of glycolysis | | F-Am | fed rat | amytal | 0.6 mM | 48 – 60 min | inhibition of respiratory chain,
decreased 'energization' of mitochondrial membrane,
high rates of glycolysis | | F-Dnp | fed rat | dinitrophenol | 0.03 mM | 54-60 min | uncoupling of oxidative phosphorylation,
decreased 'energization' of mitochondrial membrane,
high rates of glycolysis | | F-Catr | fed rat | carboxyatractyloside | 0.06 mM | 36-60 min | inhibition of adenine nucleotide transport,
increased 'energization' of mitochondrial membrane,
high rates of glycolysis | | Н | 24-h starved | substrate-free perfusion | | _ | oxidation of endogenous substrates (fatty acids), ketogenesis | | H-L | 24-h starved | lactate | 2 mM | 36-60 min | gluconeogenesis from lactate,
increased respiration, decreased ketogenesis | | H-D | 24-h starved | dihydroxyacetone | 2 mM | 36-60 min | glucose and lactate production from triose, increased respiration, decreased ketogenesis | | H-G | 24-h starved | glucose
plus insulin | 25 mM
5 U/l | 30 – 60 min | glycolysis from exogenous glucose, glycogen synthesis? |