IX. METABOLIC END PRODUCTS

102. EXCRETION PRODUCTS IN FECES: MAN

Values are based on "normal" dietary intake, including approximately $10 \, \mathrm{g}$ nitrogen/day. In reducing values to mg/kg or $\mu \mathrm{g}/\mathrm{kg}$, a body weight of 70 kg was assumed, unless spe-

cific weight was reported in the literature. Values in parentheses are ranges, estimate "c" (see Introduction).

	Constituent (Synonym)	Amount Excreted per kg body wt per day	Refer- ence		Constituent (Synonym)	Amount Excreted per kg body wt per day	Refer- ence
_	0 10 11	Ctituanta ma		34	Neutral	(10-45)	15
	General Chemica	l Constituents, mg		35	Unsaponifiable	33(22-38)1/	45
1	Solids	394(140-560)	46	36	Fatty acids, total	(41-92)	3,18,25
2	Water	(910-1820)	40	37	linoleic	(1.6-3.6)	18
_				38	oleic	(5-11)	18
	Electron	lytes, mg		39	palmitic	(13-30)	18
3	Aluminum	0.0006	26	40	stearic	(14-33)	18
4	Arsenic	0.033(0.001-0.116)	36	41	Soaps, total	53(40-66)1/	45
5	Calcium	(5-10)	16,38	42	n-dodecanoic	0.32/	34
6	Chlorine	(0.21-0.50)	4	43	n-tetradecanoic	1.92/	34
7	Cobalt	(0.000002-	20	44	n-pentadecanoic	0.42/	34
,	Cobair	0.000020)		45	n-hexadecanoic	38.82/	34
8	Copper	0.027(0.023-0.037)	26	46	n-heptadecanoic	1.32/	34
9	Iron	120(65-208)	9	47	n-octadecanoic	49.22/	34
10	Lead	0.0042	26	48	$\Delta^{9,10}$ -hexadecanoic	1.12/	34
	Magnesium	2.5(1.510-3.185)	29	49	Δ9,10-octadecanoic	7.02/	34
	Manganese	(0.018-0.120)	26,27		Neutral steroids		
		0.00014	39	50	Total	(9-14)	2,12
	Mercury	(0.0012-0.0025)	27	51	Campesterol (24\alpha-Methyl-	0.6	12
	Nickel	0.00986(0.00710-	9	1	cholest-5-en-3β-ol)		
15	Phosphorus, total	0.02000)		52	Cholesterol (cholest-5-en-3-	1.4	12
16	Potassium	6.7	7	1	α-ol)	6	12
17	Silver	0.0008	26	53	Coprostanol (5β-cholestan-	0	1.2
18	Sodium	1.7	7	11.	3β-ol)	0.6	12
19	Sulfur, total	2.0	7	54		0.0	12
20	Tin	(0.17-0.45)	7,26		lestan-3-one)	0.6	12
21	Zinc	0.100(0.058-0.144) 41	55	β-Sitosterol (24β-ethyl-cho-	0.0	12
	Vitamins & Related Compounds, μg			56		2	12
22	Thiamine	7.80(0.67-18.00)	10	11	cholest-5,22-dien-3β-ol)		
	Riboflavin	14.7(8.0-23.0)	10	57	Hydrocarbons	3.9(1.4-5.6)	2
	Nicotinic acid	52(12-124)	10	58	Mono- & di-glycerides	1.2(0.4-1.7)	2
25	Biotin -	1.90(0.63-6.64)	10	59	Triglycerides	3,9(1.4-5.6)	2
26	Pantothenic acid	31.40(3.85-63.40)	10	60	Long-chain alcohols	1.9(0.7-2.6)	2 2
27	Folic acid	4.3(1.8-7.7)	10	61	Long-chain esters	1.9(0.7-2.6)	
28	p-Aminobenzoic acid	3.50(1.01-8.20)	10	62	Phospholipids	2.3(0.8-3.4) •	2
CAVALITY OF	Ascorbic acid	(60-70)	6		Bile acids, total	3.9(1.4-5.6)	3
	Vitamin E	308(226-391)	28	64		Trace	5,8,11
	Xanthophyll	(8-100)	42	1			13,19
32	Xanthophyll + carotene	(20-600)	42	-			23,24
	Lipids & Miscellaneo	ous Organic Acids, mg	1				32
33	Fats, total	56(30-100)	46	65	Phenol, total	(0-3)	14

 oic; 3β , 7α , 12α -trihydroxy-cholanoic; 3β , 7β , 12α -trihydroxy-cholanoic; 3-keto- 5β -cholanoic; 3-leto- 12α -hydroxy- 12α -keto- 12α -hydroxy- 12α -hydroxy-

	Constituent (Synonym)	Amount Excreted per kg body wt per day	Refer- ence			
	Nitrogenous Substances, mg					
66	Imidazole derivatives	(0-0.2)	30			
	Porphyrins					
67	Bilirubin	0.14	44			
68	Coproporphyrin	(0.005-0.014)	35			
69	Protoporphyrin	0.014	17			
70	Urobilinogen + sterco- bilinogen	2	43,44			
71	Uroporphyrin	(0.00014-0.00060)	35			
72	Purine bases	(2-3)	31			
73	Amino acids, arginine, total	3.8(2.9-5.0)	37			

	Constituent (Synonym)	Amount Excreted per kg body wt per day	Reference			
74	histidine, total	1.7(1.4-2.1)	37			
75	isoleucine, total	4.3(3.3-5.5)	37			
76	leucine, total	5.6(4.3-6.9)	37			
77	lysine, total	5.7(4.5-6.9)	37			
78	threonine, total	4.0(3.3-5.2)	37			
79	valine, total	4.6(3.6-6.2)	37			
80	Nitrogen, total	(11.4-36.0)	21			
81	ammonia	(0.36-1.2)	33			
	. Enzymes					
82	Chymotrypsin	Consult	1,22			
83	Trypsin	references	1,22			

Contributor: Van Pilsum, John F.

References

- [1] Ammann, R., et al. 1964. Klin. Wochschr. 42:5333.
- [2] Aylward, F., and P. A. Wills. 1962. Brit. J. Nutr. 16: 339.
- [3] Aylward, F., and P. D. S. Wood. 1962. Ibid. 16:345.
- [4] Cammidge, P. J. 1914. The faeces of children and adults. W. Wood, New York.
- [5] Carey, J. B., and C. J. Watson. 1963. J. Biol. Chem. 216:847.
- [6] Chinn, H., and C. J. Farmer. 1939. Proc. Soc. Exptl. Biol. Med. 41:561.
- [7] Clark, G. W. 1926. Univ. Calif. (Berkeley) Publ. Physiol. 5(17):195.
- [8] Danielsson, H., et al. 1963. J. Biol. Chem. 238:2299.
- [9] Daum, K., et al. 1951. J. Am. Dietet. Assoc. 27: 475.
- [10] Denko, C. W., et al. 1946. Arch. Biochem. 10:33.
- [11] Eneroth, P., B. Gordon, and J. Sjövall. 1966. J. Lipid Res. 7:524.
- [12] Eneroth, P., K. Hellström, and R. Ryhage. 1964. Ibid. 5:245.
- [13] Eneroth, P., et al. 1966. Ibid. 7:511.
- [14] Folin, O., and W. Denis. 1916. J. Biol. Chem. 26: 507.
- [15] Fowweather, F. S. 1926. Brit. J. Exptl. Pathol. 7:15.
- [16] Goiffon, R., B. Goiffon, and G. Fron. 1961. Gastroenterology 96:312.
- [17] Goldberg, J. S. 1966. Calif. Med. 104:488.
- [18] Gompertz, S. M., and H. G. Sammons. 1963. Clin. Chim. Acta 8:591.
- [19] Hamilton, J. G. 1963. Arch. Biochem. Biophys. 101:7.
- [20] Harp, M. J., and F. I. Scoular. 1952. J. Nutr. 47:67.
- [21] Hawk, P. B., B. L. Oser, and W. H. Summerson. 1947. Practical physiological chemistry. Ed. 12. Blakiston, Philadelphia.
- [22] Haverback, B. J., et al. 1963. Gastroenterology 44: 588.
- [23] Heftmann, E., et al. 1959. Arch. Biochem. Biophys. 84:324.
- [24] Jenke, M., and F. Bandow. 1937. Z. Physiol. Chem. 249:16.

- [25] Jover, A., and R. S. Gordon, Jr. 1962. J. Lab. Clin. Med. 59:878.
- [26] Kehoe, R. A., J. Cholak, and R. V. Story. 1940. J. Nutr. 19:579.
- [27] Kent, N. L., and R. A. McCance. 1941. Biochem. J. 35:877.
- [28] Klatskin, G., and D. W. Molander. 1952. J. Lab. Clin. Med. 39:802.
- [29] Leichsenring, J. M., L. M. Norris, and S. A. Lamison. 1951. J. Nutr. 45:477.
- [30] Loeper, M., A. Lesurl, and A. Thomas. 1934. Bull. Soc. Chim. Biol. 16:385.
- [31] Mendel, L. B., and J. F. Lyman. 1910. J. Biol. Chem. 8:115.
- [32] Norman, A., and R. H. Palmer. 1964. J. Lab. Clin. Med. 63:986.
- [33] Robinson, C. S. 1922. J. Biol. Chem. 52:445.
- [34] Sammons, H. G., and S. M. Wiggs. 1960. Clin. Chim. Acta 5:141.
- [35] Schwartz, S., et al. 1960. Methods Biochem. Anal. 8.
- [36] Schwarz, L., and W. Deckert. 1931. Arch. Hyg. Bakteriol. 106:346.
- [37] Sheffner, A. L., J. B. Kirsner, and W. L. Palmer. 1948.
 J. Biol. Chem. 175:107.
- [38] Shohl, A. T. 1939. Mineral metabolism. Reinhold, New York.
- [39] Stock, A. 1940. Biochem. Z. 304:73.
- [40] Sunderman, F. W., and F. Boerner. 1949. Normal values in clinical medicine. W. B. Saunders, Philadelphia.
- [41] Tribble, H. M., and F. I. Scoular. 1954. J. Nutr. 52: 210.
- [42] Wald, G., W. R. Carroll, and D. Sciarra. 1941. Science 94:95.
- [43] Watson, C. J. 1937. Arch. Internal Med. 59:196.
- [44] Watson, C. J. 1963. J. Clin. Pathol. 16:1.
- [45] Williams, H. H., et al. 1943. J. Nutr. 25:379.
- [46] Wollaeger, E. E., M. W. Comfort, and A. E. Osterberg. 1947. Gastroenterology 9:272.