Table I. Estimations of In Situ Activity of Cytosolic FBPase and Sucrose
P Synthetase in a Light-Dark Transition

FBPase activity was estimated in two ways. Method I: The rate of sucrose synthesis after correcting for the alteration of the cytosolic hexoseP level. Method II: The incorporation of radioactivity into sucrose plus cytosolic hexoseP, after correction for the specific activity of the precursor pools (trioseP and 3PGA).

Fine Interval	Sucrose Synthesis (Sucrose P Synthetase Activity)	Decreased Cytosolic HexoseP	Cytosolic FBPase Activity	
			Method I	Method II
	μmol hexose/mg Chl·h			
Light	13.3	0	13.3	10.8
-3a-15 s dark	12.2	1.7	10.5	3.3
15-40 s dark	6.2	5.3	0.8	0
40-90 s dark	3.7	3.3	0.3	0.2
90-240 s dark	1.3	0.7	0.7	0.2
240-600 s dark	0.2	0.2	0.3	0.2

^a 3 s before darkening.