| Species | $A_{\rm c}'$ (mmol m ⁻² d ⁻¹) | $A_{ m c}'$ (%) | $A_{\rm sat}$ (μ mol m ⁻² s ⁻¹) | |---|--|-----------------|---| | Current average C_3 crop $(k^c_s = 2.5, \tau = 92.5)$ | 1040 | 100 | 14.9 | | Griffithsia monilis $(k^c_c = 2.6, \tau = 167)$ | 1430 | 127% | 21.5 | | Amaranthus edulis $(k^c_c = 7.3, \tau = 82)$ | 1250 | 117% | 28.3 | | A. edulis/current $(k^{c}_{c} = 2.5, \tau = 92.5)$ | 1360 | 131% | 28.3 | **Table 2.** Estimates of the daily canopy carbon gain (A_c') after Zhu *et al.* (2004b) and assuming the hypothetical replacement of the average form of Rubisco from C_3 crop species with Rubiscos from other species Reported values for k^c_c and τ of these species (Jordan & Ogren 1984; Seemann *et al.* 1984; Whitney *et al.* 2001) are listed. The final row extends to the results of Zhu *et al.* (2004b) to simulate the gain that can be achieved if a form of Rubisco with a high k^c_c (*A. edulis*) can be expressed in the sunlit leaves and if a form with high τ (current C_3 average) can be expressed in the shade leaves. k^c , maximum catalytic rate of Rubisco; τ , specificity of Rubisco for CO₂ relative to O₂; $A_{\rm sat}$, maximum rate of photosynthesis; Rubisco, ribulose 15-biphosphate carboxylase/oxygenase.