Species	$A_{\rm c}'$ (mmol m ⁻² d ⁻¹)	$A_{ m c}'$ (%)	$A_{\rm sat}$ (μ mol m ⁻² s ⁻¹)
Current average C_3 crop $(k^c_s = 2.5, \tau = 92.5)$	1040	100	14.9
Griffithsia monilis $(k^c_c = 2.6, \tau = 167)$	1430	127%	21.5
Amaranthus edulis $(k^c_c = 7.3, \tau = 82)$	1250	117%	28.3
A. edulis/current $(k^{c}_{c} = 2.5, \tau = 92.5)$	1360	131%	28.3

Table 2. Estimates of the daily canopy carbon gain (A_c') after Zhu *et al.* (2004b) and assuming the hypothetical replacement of the average form of Rubisco from C_3 crop species with Rubiscos from other species

Reported values for k^c_c and τ of these species (Jordan & Ogren 1984; Seemann *et al.* 1984; Whitney *et al.* 2001) are listed. The final row extends to the results of Zhu *et al.* (2004b) to simulate the gain that can be achieved if a form of Rubisco with a high k^c_c (*A. edulis*) can be expressed in the sunlit leaves and if a form with high τ (current C_3 average) can be expressed in the shade leaves.

 k^c , maximum catalytic rate of Rubisco; τ , specificity of Rubisco for CO₂ relative to O₂; $A_{\rm sat}$, maximum rate of photosynthesis; Rubisco, ribulose 15-biphosphate carboxylase/oxygenase.