Table 1. Equilibrium and kinetic data for folding of MLAc

 $m_{\rm IN(eq)}$

Kinetics **Parameters** Equilibrium Far-UV CD (%) Fluorescence (%) $2.3 \pm 0.1 M$ [urea]_{1/2} $-13.5 \pm 1 \, kJ/mol,M$ m_{UN} $\Delta G_{UN}(H_2O)$ $31 \pm 1 \, kJ/mol$ $>1,000 \text{ s}^{-1}$ (20) $>1,000 \text{ s}^{-1} (50)$ k_{burst} k_{fast} $0.34 \pm 0.01 \,\mathrm{s}^{-1}$ (30) $1.5 \pm 0.05 \, kJ/mol,M$ m_{fast} $0.032 \pm 0.002 \, s^{-1}$ (50) $0.029 \pm 0.002 \, s^{-1}$ (50) k_{IN} $-1.22 \pm 0.08 \, kJ/mol,M$ $-1.39 \pm 0.08 \, kJ/mol,M$ m_{IN} $0.04 \pm 0.01 \,\mathrm{ms^{-1}}$ (100) $0.04 \pm 0.01 \text{ ms}^{-1}$ (100) k_{unf} $3.97 \pm 0.11 \, kJ/mol,M$ $3.85 \pm 0.09 \, kJ/mol,M$ $m_{\rm unf}$ $\Delta G_{IN}(H_2O)$ $16.5 \pm 0.5 \, kJ/mol$ $16.1 \pm 1.0 \, kJ/mol$

Equilibrium unfolding (at pH 7.5 and 20°C) is two-state, whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow \text{U} \leftrightarrow I \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow \text{U} \leftrightarrow I \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow \text{U} \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the kinetic-folding data for MLAc is $I_{\text{burst}} \leftrightarrow I$. Whereas the simplest mechanism that explains the s

 $-5.19 \pm 0.19 \text{ kJ/mol,M}$

 $-5.24 \pm 0.17 \text{ kJ/mol,M}$