Table 1. Enzymes listed in order of decreasing catalytic proficiency.[⋆] | Enzyme | Nonenzymatic $t_{1/2}^{\star}$ | k _{non} * (s ⁻¹) | κ _{cat} †
(s ^{−1}) | $k_{\text{car}}/K_{\text{m}}^{\dagger}$
(s ⁻¹ M ⁻¹) | Rate
enhancement
(k _{cat} /k _{non}) | Catalytic proficiency $[(k_{cat}/K_m)/k_{non}]$ (M^{-1}) | |---------------------------|--------------------------------|---------------------------------------|--|---|--|--| | OMP decarboxylase | 78,000,000 years | 2.8 × 10 ⁻¹⁶ | 39 | 5.6×10^{7} | 1.4 × 10 ¹⁷ | 2.0 × 10 ²³ | | Staphylococcal nuclease | 130,000 years | 1.7×10^{-13} | 95 | 1.0×10^{7} | 5.6×10^{14} | 5.9×10^{19} | | Adenosine deaminase | 120 years | 1.8×10^{-10} | 370 | 1.4×10^{7} | 2.1×10^{12} | 7.8×10^{16} | | AMP nucleosidase | 69,000 years | 1.0×10^{-11} | 60 | 5.0×10^{5} | 6.0×10^{12} | 5.0×10^{16} | | Cytidine deaminase | 69 years | 3.2×10^{-10} | 299 | 2.9×10^{6} | 1.2×10^{12} | 9.1×10^{15} | | Phosphotriesterase | 2.9 years | 7.5×10^{-9} | 2100 | 4.0×10^{7} | 2.8×10^{11} | 5.3×10^{15} | | Carboxypeptidase A | 7.3 years | 3.0×10^{-9} | 578 | 6.6×10^{6} | 1.9×10^{11} | 2.2×10^{15} | | Ketosteroid isomerase | 7 weeks | 1.7×10^{-7} | 66000 | 3.0×10^{8} | 3.9×10^{11} | 1.8×10^{15} | | Triosephosphate isomerase | 1.9 days | 4.3×10^{-6} | 4300 | 2.4×10^{8} | 1.0×10^{9} | 5.6×10^{13} | | Chorismate mutase | 7.4 hours | 2.6×10^{-5} | 50 | 1.1×10^{6} | 1.9×10^{6} | 4.2×10^{10} | | Carbonic anhydrase | 5 s | 1.3×10^{-1} | 1×10^{6} | 1.2×10^{8} | 7.7×10^{6} | 9.2×10^{8} | | Cyclophilin, human | 23 s | 2.8×10^{-2} | 13000 | 1.5×10^{7} | 4.6×10^{5} | 5.3×10^{8} | "Nonenzymatic reaction rate constants were obtained for OMP decarboxylase and staphylococcal nuclease from the present work, for adenosine and cytidine deaminases from (5), for AMP nucleosidase from (26), for phosphotriesterase from (26), for carboxypeptidase A from (3), for ketosteroid isomerase from (27), for triosephosphate isomerase from (28), for chorismate mutase from (4), for carbonic anhydrase from (2), and for cyclophilin from (3). **Tenzyme reaction rate constants were obtained for OMP decarboxylase from (7), for staphylococcal nuclease from (29), for adenosine deaminase from (30), for AMP nucleosidase from (31), for phosphotriesterase from (26), for carboxypeptidase A from (32), for ketosteroid isomerase from (33), for triosephosphate isomerase from (34), for chorismate mutase from (4), for carbonic anhydrase from (35), and for cyclophilin from (36). SCIENCE • VOL. 267 • 6 JANUARY 1995