Table 4. Energy input rate (W) for volume regulation in cells as a function of variations in cell radius, growth rate, osmolarity difference between inside and outside of cells, and the use of wall and of contractile vacuole methods of cell volume regulation

Assumptions	Cell of 5 μ m radius	Cell of 10 μ m radius
1) Contractile vacuole (minimal thermodynamic input) with L_p of 10^{-14} m s ⁻¹ Pa ⁻¹ and a pressure difference of 0.2 MPa	1·26×10 ⁻¹³	5·03 × 10 ⁻¹³
Contractile vacuole [mechanistic calculation; other assumptions as in (1)]	3.45×10^{-12}	13.8×10^{-12}
 Contractile vacuole (minimal 10⁻¹⁵ m s⁻¹ Pa⁻¹, pressure difference of 0·2 MPa 	1.26×10^{-14}	5.02×10^{-14}
 Contractile vacuole (minimal thermodynamic input) with L_p of 10⁻¹⁴ m s⁻¹ Pa⁻¹, pressure difference of 0-4 MPa 	5.04×10^{-13}	20.16×10^{-13}
 Polyglycan cell wall (minimal thermodynamic input) growth rate as indicated 	$1.96 \times 10^{-12} \\ (8 \times 10^{-6} \text{ s}^{-1})$	7.84×10^{-12} $(4 \times 10^{-6} \text{ s}^{-1})$
(6) Polyglycan cell wall [mechanistic calculation; other assumptions as in (5)]	$\begin{array}{c} 2.51 \times 10^{-12} \\ (8 \times 10^{-6} \text{ s}^{-1}) \end{array}$	$10.04 \times 10^{-12} (4 \times 10^{-6} s^{-1})$
7) Polyglycan cell wall [as for (6), but with pressure difference of 0:4 MPa]	5.02×10^{-12} $(8 \times 10^{-6} \text{ s}^{-1})$	$\frac{20.08 \times 10^{-12}}{(4 \times 10^{-6} \text{ s}^{-1})}$