Table 4. Energy input rate (W) for volume regulation in cells as a function of variations in cell radius, growth rate, osmolarity difference between inside and outside of cells, and the use of wall and of contractile vacuole methods of cell volume regulation | Assumptions | Cell of 5 μ m radius | Cell of 10 μ m radius | |---|--|---| | 1) Contractile vacuole (minimal thermodynamic input) with L_p of 10^{-14} m s ⁻¹ Pa ⁻¹ and a pressure difference of 0.2 MPa | 1·26×10 ⁻¹³ | 5·03 × 10 ⁻¹³ | | Contractile vacuole [mechanistic calculation; other assumptions as in (1)] | 3.45×10^{-12} | 13.8×10^{-12} | | Contractile vacuole (minimal
10⁻¹⁵ m s⁻¹ Pa⁻¹, pressure
difference of 0·2 MPa | 1.26×10^{-14} | 5.02×10^{-14} | | Contractile vacuole (minimal
thermodynamic input) with L_p of
10⁻¹⁴ m s⁻¹ Pa⁻¹, pressure
difference of 0-4 MPa | 5.04×10^{-13} | 20.16×10^{-13} | | Polyglycan cell wall (minimal
thermodynamic input)
growth rate as indicated | $1.96 \times 10^{-12} \\ (8 \times 10^{-6} \text{ s}^{-1})$ | 7.84×10^{-12}
$(4 \times 10^{-6} \text{ s}^{-1})$ | | (6) Polyglycan cell wall [mechanistic calculation; other assumptions as in (5)] | $\begin{array}{c} 2.51 \times 10^{-12} \\ (8 \times 10^{-6} \text{ s}^{-1}) \end{array}$ | $10.04 \times 10^{-12} (4 \times 10^{-6} s^{-1})$ | | 7) Polyglycan cell wall [as for (6),
but with pressure difference of
0:4 MPa] | 5.02×10^{-12}
$(8 \times 10^{-6} \text{ s}^{-1})$ | $\frac{20.08 \times 10^{-12}}{(4 \times 10^{-6} \text{ s}^{-1})}$ |