Table 1: Energy consumption for personal travel.

	miles per gallon					
			weighted	annual consumption		
model	city	highway	$average^a$	gallons	$10^7 \; \mathrm{BTU}^b$	ton CO_2
Prius	51	60	57	146	1.7	1.19
Camry	24	33	30	278	3.2	2.24
Suburban	11	15	14	595	6.8	4.76

a: based on 63% highway driving

b: the conversion of gallons consumed to BTU consumed is based on an average of 1 U.S. gallon of fuel = 115,000 BTU. Many sources report a conversion factor of 1 U.S. gallon of fuel = 125,000 BTU, but this assumes a so-called High Heating Value, which is not appropriate for motor vehicles' internal combustion engines [Oak Ridge National Laboratory Bioenergy Conversion Factors, http://bioenergy.ornl.gov/papers/misc/energy_conv.html]
c: the conversion of BTU consumed to CO₂ emissions is based on the average of the U.S. economy, as described in the text