TABLE III Effect of adjacent carbon groups on the rate of organic transformations a | Decarboxylation of a carboxylic acid, R-COOH or R-COO- | | Dehydration of an alcohol, R-CR'R"-OH | | Deacylation, isomerization and aldolization of a ketone or
aldehyde, R2>C=O or R=CHO | | |--|--|---|--|---|--| | Substance | Estimated t _{1/2} -50 °C | Substance | Estimated t _{1/2} -50 °C | Substance | Estimated t _{1/2} -50 °C | | acetic acid | 3 × 10 ²⁷ s
2 × 10 ²⁵ s | 1º-alcohol (ethanol, propanol,
decanol, phenylethanol) | $[1\times10^{18}~\mathrm{s}]8$ | 2-decanone (deacyl., isomer.)
decanal (0.01 M aldoliz.) | no react. (250 °C)
2 × 10 ⁶ s (250 °C) | | and the same | 2 ~ 10 | 3º-alcohol (t-butanol) | 1×10^8 s | 2-decanone (0.01 M aldoliz.) | 4 × 10 ⁷ s (250 °C) | | acetoacetic acid
acetoacetate | 4×10^3 s 2×10^5 s | 3-hydroxy-propanal | $5\times10^5~\mathrm{s}$ | acetylacetone (deacylation) | $8\times10^5~\text{s}$ | | lactic acid
lactate | $2 \times 10^{13} \text{ s}^{\text{b}}$
$[2 \times 10^{13} \text{ s}]^{\text{c}}$ | ethylene glycol | insuff, data | glyceraldehyde (isomerization)
glycolaldehyde (0.01 M aldoliz.) | 5×10^6 s 2×10^7 s | | tartronate semialdehyde | [10 ³ s] ^d | glyceraldehyde | 9×10^5 s | α-hydroxymalonaldehyde | no data found | | pyruvic acid
pyruvale | $1 \times 10^4 \text{ s}^e$
$6 \times 10^5 \text{ s}^e$ | glycolaldehyde | aldolizes | glyoxal (intramolec. redox)
pyruvaldehyde (intramolec. redox) | 3×10^6 s 2×10^6 s | | oxalic acid
oxalate ⁻² | $6 \times 10^9 \text{ s}$
$[6 \times 10^{11} \text{ s}]^f$ | lactic acid
lactate | $2 \times 10^{13} \text{ s}^{\text{b}}$
$[2 \times 10^{13} \text{ s}]^{\text{c}}$ | glyoxylate | decarboxylates | | malonic acid
malonate ⁻¹ | $4 \times 10^6 \text{ s}$
$6 \times 10^6 \text{ s}$ | β -hydroxy acids (β -hydroxybutyric acid, malate ⁻¹ , 2-deoxygluconic acid) | [6 × 10 ¹² s] h | malonic semialdehyde | no data found | a Unbracketed half-lifes were estimated by extrapolation using Arrhenius plots. Bracketed half-lifes were estimated by extrapolation using the Arrhenius plot slope of a related reaction f Half-life of oxalate⁻² was estimated using the slope of the Arrhenius plot of oxalic acid. B Half-life of 1°-alcohols was estimated from the joint Arrhenius plot of the alcohols listed. h Half-life of β -hydroxy acids was estimated from the joint Arrhenius plot of the acids listed.