Table 2. The effect of varying the nature of the carbon source on the energetics of E. coli during growth in continuous culture Cells were grown at the stated pH (± 0.05) under carbon-limited conditions. $\rightarrow H^+/O$ ratios, M_{O_2} and $Y_{O_2}^{\text{max}}$ were determined as described in Table 1 and in the Materials and Methods section. Values of N were calculated by the same approach as described in the text for glycerol,

with the modifications described in the footnotes to this Table. The theoretical value of $Y_{\text{max}}^{\text{max}}$ for each carbon source was calculated essentially as described by Stouthamer [31], but no allowances were made for the transport of any cell nutrients. Where appropriate, all values are quoted as the average \pm S.E.M. with the number of determinations in brackets

Limiting pН Ymax $\rightarrow H^+/O$ N YMAX Theoretical Y Max / M_{Ω_2} Mcarbon source (endogenous) YMAX theoretical YMAX g-ion H+ mol ATP g cells · mol ATP equiv. -1 mol O2 mol ATP equiv. g cells · g-atom O⁻¹ · mol O₂-1 · mol O₂-1 · h-1 $\cdot h^{-1}$ g cells⁻¹ ⋅ g cells⁻¹ 4.31 a, b 33.9 40.9 0.000440.00190 **D-Glucose** 6.78 59.7 3.75 (2)13.9 58.2 3.77 (2)4.31 a 13.5 33.9 39.8 0.00097 0.00418 p-Galactose 6.98 7.01 57.8 3.58 (2)4.33° 13.4 33.9 39.5 0.00064 0.00277 L-Arabinose 4.31 a, b 0.00071 0.00306 **D-Fructose** 6.98 56.0 3.94 (2)12.9 33.9 38.1 4.00 12.7 29.5 0.00058 0.00232 Glyceroi 7.02 50.9 3.96 + 0.07(5)43.1 Fumarate 6.90 40.4 3.45 ± 0.23 (4) 4.00^{d} 10.1 22,6 44.7 0.00113 0.00452 7.27 35.0 3.67 3.67e 9.5 18.6 51.1 0.00073 0.00268 DL-Lactate (2)Pyruvate 7.02 34.3 3.45 (2) 4.00 8.6 18.6 46.3 0.00073 0.00292 2.88^{f} 12.9 55.0 0.00120 0.00346 Acetate 7.05 20.3 3.13 + 0.25(4)7.1

^a The N values for glucose, fructose and galactose were calculated on the basis of 80% oxidation via glycolysis and 20% via the pentose phosphate pathway [32].

^b One ATP equivalent was allowed for the combined processes of sugar transport (via the phosphotransferase system) and phosphorylation to glucose 6-phosphate and fructose 1-phosphate [33, 34].

[°] N was calculated on the basis of 3 mol of arabinose yielding 2 mol of fructose 6-phosphate plus 1 mol of glyceraldehyde 3-phosphate.

^d The N value for fumarate was calculated on the assumption that phosphopyruvate carboxylase and the malic enzyme were used equally.

^e The initial oxidation of DL-lactate occurs predominantly via flavin-linked D- and L-lactate oxidases [35].

^f The N value for acetate was calculated on the basis of ten turns of the Krebs cycle per turn of the glyoxylate cycle; two ATP equivalents were allowed for the activation of acetate via acetate thiokinase (H. L. Kornberg, personal communication).