Table 1 Corral size and diffusion coefficients of particles in the nucleus and chromatin loci

Particle/locus	$r_{\rm c}~({\rm nm})^{\rm a}$	$D (\mu \text{m}^2 \text{ s}^{-1})$	Reference
Mx1-YFP ^b Cajal bodies ^b PML bodies ^b Nanospheres ^c Nucleoplasmic chromatin ^d Telomeres ^c Dense chromatin regions 1-Mb chromatin domain	280 310 260 150 240 230	1.8×10^{-4} 1.1×10^{-4} 1.2×10^{-4} 4.10^{-4} 4.3×10^{-4} 1.3×10^{-4} 4.8×10^{-5} $0.5 - 1.5 \times 10^{-5}$	Görisch et al. 2004 Görisch et al. 2004 Görisch et al. 2004 Tseng et al. 2004 Chubb et al. 2002 Molenaar et al. 2003 Görisch et al. 2004 Bornfleth et al. 1999

^aThe size of the region in which a given particle or the chromatin locus can translocate its centre of mass during an observation time of up to a few minutes is defined by a circle with radius r_c ^bThe given diffusion coefficient refers to the value D_c according to Eq. 4, which is believed to reflect the mobility of the chromatin environment ^cThe value of D was determined from MSD measurements at times from $\frac{3}{2}$ to $\frac{10}{5}$ c.

^dA lacO array with integration site 5p14 was studied, which corresponds to a G band with a preferred localisation in the interior of

responds to a O data with a pictered localisation in the interior of the nucleoplasm eValue observed for the majority of telomeres. A \sim 10% fraction of telomeres showed a higher mobility with a diffusion coefficient of D=5.8×10⁻⁴ μ m² s⁻¹

from 3 s to 10 s