Table 2. Comparison of metabolic pathways from glucose to lactate, to glutamate or to CO₂

Per mole glucose	Lactate ^a via Embdem- Meyerhoff- Parnas	Glutamate A ^b via CO ₂ fixation	Glutamate B ^c via glyoxylate shunt	CO ₂ ^d via Krebs citric acid cycle
Percent energy derived from	100	10	10	11
substrate level phosphorylations Number of substrate level phosphorylations	2	1	1.5	4
Free energy dissipation ^e $\Delta G'_{ox}$ (pH 7)				
In carbon transformation (kJ)	-209.80	-228.8	-233.82	-243.82
In further oxidation (kJ)	-47.8	-2.7	-2.7	0
Electrons produced (at levels of NADH + H ⁺)	0	6	12	24

 $^{^{}a}$ C₆H₁₂O₆ \rightarrow 2C₃H₃O₃⁻ + 2H⁺ + OH $^{\circ}$.

energy production to an extent depending on the coupling to phosphorylation. A mole of high-energy bonds $\Delta G'$ (pH 7) is worth 34.5 kJ. To convert values given in kJ to kcal, divide by 4.185.

 $^{^{}b}$ C₆H₁₂O₆ + NH₄⁺ \rightarrow CO₂ + C₅H₈O₄N⁻ + 2H⁺ + 6H°.

 $^{{}^{}c} 1.5 C_{6} H_{12} O_{6} + N H_{4}{}^{+} + 3 H_{2} O \rightarrow C_{5} H_{8} O_{4} N^{-} + 4 C O_{2} + 2 H^{+} + 18 H^{\circ}.$ ${}^{d} C_{6} H_{12} O_{6} + N H_{4}{}^{-} \rightarrow 6 C O_{2} + 24 H^{\circ}.$

^e Free energy dissipation expressed as $\Delta G'$ (pH 7) in kJ per mole of two-carbon compound transformed. This is the energy available in oxidizing the compound with NAD⁺. Each pair of electrons at this level can result in 219 kJ of energy dissipated in the electron transport chain with concomitant