Table 2. Comparison of metabolic pathways from glucose to lactate, to glutamate or to CO₂ | Per mole glucose | Lactate ^a via Embdem- Meyerhoff- Parnas | Glutamate A ^b via CO ₂ fixation | Glutamate
B ^c via
glyoxylate
shunt | CO ₂ ^d via
Krebs citric
acid cycle | |---|--|---|--|--| | Percent energy derived from | 100 | 10 | 10 | 11 | | substrate level phosphorylations Number of substrate level phosphorylations | 2 | 1 | 1.5 | 4 | | Free energy dissipation ^e $\Delta G'_{ox}$ (pH 7) | | | | | | In carbon transformation (kJ) | -209.80 | -228.8 | -233.82 | -243.82 | | In further oxidation (kJ) | -47.8 | -2.7 | -2.7 | 0 | | Electrons produced (at levels of NADH + H ⁺) | 0 | 6 | 12 | 24 | $^{^{}a}$ C₆H₁₂O₆ \rightarrow 2C₃H₃O₃⁻ + 2H⁺ + OH $^{\circ}$. energy production to an extent depending on the coupling to phosphorylation. A mole of high-energy bonds $\Delta G'$ (pH 7) is worth 34.5 kJ. To convert values given in kJ to kcal, divide by 4.185. $^{^{}b}$ C₆H₁₂O₆ + NH₄⁺ \rightarrow CO₂ + C₅H₈O₄N⁻ + 2H⁺ + 6H°. $^{{}^{}c} 1.5 C_{6} H_{12} O_{6} + N H_{4}{}^{+} + 3 H_{2} O \rightarrow C_{5} H_{8} O_{4} N^{-} + 4 C O_{2} + 2 H^{+} + 18 H^{\circ}.$ ${}^{d} C_{6} H_{12} O_{6} + N H_{4}{}^{-} \rightarrow 6 C O_{2} + 24 H^{\circ}.$ ^e Free energy dissipation expressed as $\Delta G'$ (pH 7) in kJ per mole of two-carbon compound transformed. This is the energy available in oxidizing the compound with NAD⁺. Each pair of electrons at this level can result in 219 kJ of energy dissipated in the electron transport chain with concomitant