Table 3. Comparison of model predictions and experiments. | | Item | Model | Experimental data | References | |----------|---|---|--|---------------| | A | HGP at −5.5 mM blood glucose
HGU at 8 mM blood glucose | ~4 µmol/kg(bw)/min HGU
at 8 mM blood glucose | ~8.5 µmol/min/kg(bw) splanchnic glucose utilization (SGU) at 8 mM glucose (difference between 7 µmol/min/kg (bw) splanchnic glucose production and 15.5 µmol/min/kg (bw) splanchnic glucose uptake at physiological insulin of 300 pmol/l at 8 mM) | [29] | | | | HGP/HGU set point: 6.6 mM glucose
for half-filled glycogen; 7.3 mM
glucose for filled glycogen stores; | HGU <sgu due="" glucose="" gut<="" of="" td="" the="" to="" usage=""><td>[29]</td></sgu> | [29] | | | set point glycogenesis/
glycogenolysis | set point at 5.1 mM | set point at \sim 5 mM (\sim 6 h postprandially) | [8,25] | | | rate of glycogenesis and cumulative glycogen content | increase from 250 to 350 mM
glycogen at 7 mM (250 to 370 mM
glycogen at 8 mM) glucose in 4 h
with linear rate of glycogenesis | increase from \sim 200 to \sim 300 mM glycogen at \sim 7–8 mM glucose in 4 h with linear rate of glycogenesis | [8,24,25] | | | HGP after short term starvation and contributions from gluconeogenesis/glycogenolysis | ~8.5 µmol/kg(bw)/min HGP for short
term starvation (20 h at 3 mM glucose)
with 95% HGP from gluconeogenesis
(5% HGP from glycogenolysis) | 7.56-9.8 µmol/kg(bw)/min HGP with 92-97%
gluconeogenesis (2-8% HGP from glycogenolysis) | [2,22,50,51]. | | E | glycogen decrease
(ovemight fast) | decrease in glycogen from filled
(500 mM) to half-filled glycogen stores
(250 mM) in 16 h at 4.5 mM glucose | decrease in glycogen from almost filled
stores to ~half-filled (200–250 mM)
glycogen in around 18–20 h | [22] | | | | rate of glycogenolysis almost constant
and only decreasing at low glycogen
concentrations | rate of glycogenolysis almost constant
and only decreasing at low glycogen
concentrations | [22] | | | HGP for overnight fast and contributions from gluconeogenesis/glycogenolysis | \sim 13.5 μ mol/kg(bw)/min HGP at \sim 3.8 mM blood glucose with \sim 5.5 μ mol/kg(bw)/min glycogenolysis (41%) and \sim 8 μ mol/min/kg(bw) gluconeogenesis (59%) | $\sim\!\!12~\mu\text{mol/kg(bw)/min HGP}$ with nearly equal contributions of glycogenolysis and gluconeogenesis with $\sim\!6~\mu\text{mol/kg(bw)/min}$ (50%) | [2] | | | glycogenesis via direct
and indirect pathway | equal rates of HGU and gluconeogenesis
of 4 µmol/kg(bw)/min at 8 mM glucose
(equal contributions of direct and
indirect pathway) | ~equal amounts of glycogenesis via direct
(10 g) and indirect pathway (15 g) after oral
glucose load | [69] | | | rate of glycogenolysis | ~constant rate of glycogenolysis for
partially filled glycogen stores and a
decrease in glycogenolysis only for
glycogen below ~150 mM | $\sim\!$ constant rate of glycogenolysis for partially filled glycogen stores and a decrease in glycogenolysis only for low glycogen | [22,23] | doi:10.1371/journal.pcbi.1002577.t003