Table 1 Characteristics of pulse-labeled phage $T4\ DNA$ | (1)
Phage
strain | (2) Interval of pulse (min) | (3) Label given during exponential (E) or linear (L) synthesis | Number
of
tracks
measured | Mean
length
of
track
(μm) | (6) | (7) | (8) | (9) | (10) | |------------------------|------------------------------|--|------------------------------------|--|-----------------------|---|-------------------|--|--------------------------------------| | | | | | | R
(μm/min) | Rate of elongation) (Chromosome (Nucleotides/equivalent s) min) (r)† ‡ | | Rate
of
DNA
increase
(k) § | Growing points chromosome equivalent | | T4 D+ | 10-15
35-40 | E | 379
388 | 46·8
36·3 | 9·36
7·26 | 0·254
0·197 | 749
581 | 0·14
0·14 | 0·55
0·71 | | | 35-37-5 | L
L | 424 | 16.1 | 6-44 | 0.175 | 516 | 0.14 | 0.80 | | am NG 576 | 10–15
35–40
70–75 | E
E
L | 256
133
330 | $43 \cdot 2$ $47 \cdot 2$ $51 \cdot 7$ | 8·64
9·44
10·34 | $0.235 \\ 0.257 \\ 0.281$ | 693
758
829 | 0·034
0·034
0·035 | 0·14
0·13
0·12 | The rate of elongation in chromosome equivalents/min (r) is obtained by dividing the rate in μ m/min (column (6)) by the mean length of the phage chromosome on Millipore membranes $(36.8 \ \mu\text{m})$. The rate of elongation in nucleotides/s is obtained by multiplying the values in column 7 by 1.77×10^3 (the number of base-pairs in a phage chromosome) and dividing by 60 (to convert to s). The estimates of k are derived from the DNA synthesis curves shown in Figures 6 (a) and (6) and (6) and as described in the text. The values shown here are equal to k_E if they are exponential phase values and k_L if they are linear phase values. The number of growing points/chromosome equivalent of template DNA is equal to g_E for exponential phase values and g_L for linear phase values. The values given here were calculated from the relationships $k_E = r_E g_E$ and $k_L = r_L g_L$, which were obtained as described in the text.