$\begin{tabular}{ll} TABLE 1. Changes of Gibbs free energies under standard conditions in hydrogen-releasing and hydrogen-consuming reactions and corresponding redox potentials a \\ \end{tabular}$

Reaction	$\Delta G^{\circ}'$ (kJ per mol)	No. of electron pairs	E°' of electron-releasing redox reactions (mV)
Hydrogen-releasing reactions Primary alcohols			
CH ₃ CH ₂ OH + H ₂ O \rightarrow CH ₃ COO ⁻ + H ⁺ + 2H ₂	+9.6	2	-190, -375
Fatty acids			
$CH_3CH_2CH_2COO^- + 2H_2O \rightarrow 2CH_3COO^- + 2H^+ + 2H_2$	+48.3	2	-125, -250
$CH_3CH_2COO^- + 2H_2O \rightarrow CH_3COO^- + CO_2 + 3H_2$	+76.0	3	+30, -176, -470
$CH_3COO^- + H^+ + 2H_2O \rightarrow 2CO_2 + 4H_2$	+94.9	4	-200, -300, -430, -520
$CH_3CH(CH_3)CH_2COO^- + CO_2 + 2H_2O \rightarrow 3CH_3COO^- + 2H^+ + H_2$	+25.2	1	
Glycolic acid			
$\text{CH}_2\text{OHCOO}^- + \text{H}^+ + \text{H}_2\text{O} \rightarrow 2\text{CO}_2 + 3\text{H}_2$	+19.3	3	-92, -331, -470
Aromatic compounds			
$C_6H_5COO^{-1} + 6H_2O \rightarrow 3CH_2COO^{-1} + 2H^{+1} + CO_2 + 3H_2$	+49.5	3	
$C_6H_5OH + 5H_2O \rightarrow 3CH_3COO^- + 3H^+ + 2H_2$	+10.2	2	
Amino acids			
$CH_3CH(NH_3^+)COO^- + 2H_2O \rightarrow CH_3COO^- + NH_4^+ + CO_2 + 2H_2$	+2.7	2	-115, -375
Hydrogen-consuming reactions			
$4H_2 + 2CO_2 \rightarrow CH_3COO^- + H^+ + 2H_2O$	-94.9		
$4H_2 + 2CO_2 \rightarrow CH_3COC + H + 2H_2CO$ $4H_2 + CO_2 \rightarrow CH_4 + 2H_2CO$	-131.0		
$H_2 + S^\circ \rightarrow H_2S$	-33.9		
$^{112}_{2} + ^{1123}_{3}$ $^{4}_{12} + ^{1}_{3} + ^{1}_{3} + ^{1}_{4} + ^{1}_{4} + ^{1}_{4} + ^{1}_{5}$	-151.0		
$H_2C(NH_3^+)COO^- + H_2 \rightarrow CH_3COO^- + NH_4^+$	-78.0		
Fumarate + $H_2 \rightarrow \text{succinate}$	-86.0		

^a All calculations are based on published tables (28, 119). For H₂S and CO₂, values for the gaseous state were used.