Table 1. Changes in Pd conductivity induced by developmental, biotic, and abiotic signals

Plant type	Temperature (°C)	Lighting ^a	Pd conductivity in leaf type: ^b					
			Sink			Source		
			mean $oldsymbol{eta}^{c}$	SE^{d}	GFPC(Pd) ^e	mean β	SE	GFPC(Pd)
WT	25	L	-1.626 (50) ^f	0.092	0.615	-2.105 (41)	0.133	0.475
		D	-1.086(46)	0.070	0.921	-1.773(59)	0.104	0.564
	16	L	-1.407(50)	0.078	0.711	-1.910(44)	0.129	0.524
		D	-1.092(46)	0.084	0.916	-1.743(59)	0.126	0.574
MP	25	L	-1.669(48)	0.089	0.599	-1.966(58)	0.078	0.509
		D	-1.169(46)	0.094	0.855	-1.666(56)	0.114	0.600
	16	L	-1.654(50)	0.105	0.605	-2.293(37)	0.120	0.436
		D	-1.133 (46)	0.094	0.883	-1.972(66)	0.105	0.507

a L, light; D, dark

^b The differences in β values between light and dark and between sink and source (other conditions the same) are highly significant (P = 0.0001). The differences in β values between WT and MP are only highly significant for source leaves at 16 °C (P = 0.004)

^c Mean β , the average decay parameter β , also termed impedance, which describes the slope of the gradient formed by difference in plasmodesmal conductivity

^d SE, standard error for mean β

 $^{^{}e}$ GFPC(Pd), the coefficient of conductivity of plasmodesmata for the cell-to-cell spread of GFP that was calculated as $(-1) \cdot [1/(\text{mean } \beta)]$. For simplicity, Pd conductivity is presented as $^{GFP}C(Pd)$ and not as the decay parameter β In parentheses, number of cells 0 analyzed