TABLE 1 Calculation of the number of stem cells which could contain a certain number of mutations occurring either randomly throughout the genome, or restricted to cancer-associated genes, based upon the spontaneous mutation rate | "x" mutations | Stem cells containing "x" mutations | | |---------------|-------------------------------------|-------------------------| | | Random (genome-wide) | Cancer-associated genes | | 1 | 1.47×10^{9} | 7.98×10^{6} | | 2 | 7.35×10^{8} | 7.98×10^{3} | | 3 | 2.45×10^{8} | 5 | | 6 | 2.04×10^{6} | | | 9 | 4.05×10^{3} | | | 12 | 3 | | For these calculations, we have made the following assumptions: The spontaneous mutation rate for a gene is 2×10^{-7} per gene per division; stem cells divide 100 times in lifetime; the number of stem cells in the body is 4×10^9 ; a cell contains 5×10^4 genes, but 100 cancer-associated genes. Probabilities were calculated by Poisson probability distribution. Populations were determined by multiplication of the probability by the number of stem cells.