TABLE 3 CO₂ produced by various metabolic reactions and refixed by RuBisCO^a

2.1						
Substrate	% of substrate converted to CO_2 (relative to amt of substrate consumed)		% of CO_2 refixed by Calvin cycle (relative to amt of substrate converted to CO_2)		Net CO ₂ yield (% relative to amt of substrate consumed)	
	WT	NifA*	WT	NifA*	WT	NifA*
Fumarate ^b	40 ± 4	44 ± 4	21 ± 9	6 ± 1	32 ± 2	42 ± 2
Succinate	37 ± 3	40 ± 2	49 ± 7	30 ± 5	19 ± 2	28 ± 2
Acetate ^c	22 ± 2	23 ± 1	68 ± 11	13 ± 3	6 ± 1	18 ± 1
Butyrate-HCO ₃ -	16 ± 1	15 ± 3	180 ± 16^{e}	149 ± 36^{e}	-16 ± 1^{f}	-10 ± 3^{f}
Butyrate ^d		23 ± 3		76 ± 17		6 ± 1

Average values with 90% confidence intervals were derived from the fluxes shown in Fig. 1. Minor variations between CO₂ yields in Tables 2 and 3 are due to changes made by the fitting algorithm to find the most likely set of fluxes to explain all of the data.

*But All values were calculated by grouping malate and fumarate as a single pool. This grouping results in different CO₂ yields between Tables 2 and 3, because the CO₂ yields in Table 2 were normalized to fumarate alone so that the amount of malate produced could also be reported. If fumarate and malate were grouped in Table 2, the CO₂ yields would be I able 2 were normalized to furniate alone so that the almount of malate produce code also be reported in Table 3.

C The acctate data were previously published (7).

Wild-type cells do not grow without the NaHCO₃ supplement.

One hundred percent of the butyrate converted to CO₂ was refixed along with CO₂ from the NaHCO₃ supplement.

The negative values indicate that there was a net uptake of CO₂ from the NaHCO₃.