TABLE 3 CO₂ produced by various metabolic reactions and refixed by RuBisCO^a | 2.1 | | | | | | | |-----------------------------|--|------------|---|------------------|--|-----------------| | Substrate | % of substrate converted to CO_2 (relative to amt of substrate consumed) | | % of CO_2 refixed by Calvin cycle
(relative to amt of substrate
converted to CO_2) | | Net CO ₂ yield (% relative to amt
of substrate consumed) | | | | WT | NifA* | WT | NifA* | WT | NifA* | | Fumarate ^b | 40 ± 4 | 44 ± 4 | 21 ± 9 | 6 ± 1 | 32 ± 2 | 42 ± 2 | | Succinate | 37 ± 3 | 40 ± 2 | 49 ± 7 | 30 ± 5 | 19 ± 2 | 28 ± 2 | | Acetate ^c | 22 ± 2 | 23 ± 1 | 68 ± 11 | 13 ± 3 | 6 ± 1 | 18 ± 1 | | Butyrate-HCO ₃ - | 16 ± 1 | 15 ± 3 | 180 ± 16^{e} | 149 ± 36^{e} | -16 ± 1^{f} | -10 ± 3^{f} | | Butyrate ^d | | 23 ± 3 | | 76 ± 17 | | 6 ± 1 | Average values with 90% confidence intervals were derived from the fluxes shown in Fig. 1. Minor variations between CO₂ yields in Tables 2 and 3 are due to changes made by the fitting algorithm to find the most likely set of fluxes to explain all of the data. *But All values were calculated by grouping malate and fumarate as a single pool. This grouping results in different CO₂ yields between Tables 2 and 3, because the CO₂ yields in Table 2 were normalized to fumarate alone so that the amount of malate produced could also be reported. If fumarate and malate were grouped in Table 2, the CO₂ yields would be I able 2 were normalized to furniate alone so that the almount of malate produce code also be reported in Table 3. C The acctate data were previously published (7). Wild-type cells do not grow without the NaHCO₃ supplement. One hundred percent of the butyrate converted to CO₂ was refixed along with CO₂ from the NaHCO₃ supplement. The negative values indicate that there was a net uptake of CO₂ from the NaHCO₃.