A: CO_2 budget of atmosphere in mol \times 10^{14} /yr. Data (see also Tab. 3B) from: a) Quay et al. (1992): b) Houghton et al. (1990); c) Keeling and Shertz (1992); d) Quay et al. (1992). The budget results in an imbalance (e) of 1.80×10^{14} mol CO_2 /yr, which can be partly explained by biomass recovery, in particular for savannah fires, which are the major contributors (Artaxo et al., 1993). B: CO₂ exchange in mol 10¹⁴/yr, between the atmosphere, rivers and the world oceans. Data (see also Tab. 2 and 3 B) are from (f) Sarmiento and Sundquist (1992), (g) for the load of organic matter from rivers, the same value is taken as given in Figure 14 h. The atmosphere-derived CO₂ entering the oceans is taken from Quay et al. (1992), who give an average net annual oceanic CO₂ uptake of 1.75 × 10¹⁴ mol/yr of carbon for 4.25 × 10¹⁴ mol/yr of carbon released as CO₂ into the atmosphere by fossil-fuel burning, see also (a). Other authors (Etcheto and Merlivat, 1988) give a lower CO₂ (into the oceans) between 0.74 and 1.15 × 10¹⁴ mol CO₂/yr. The value of 1.75 × 10¹⁴ mol/yr is however in the range as summarized by Sarmiento and Sundquist (1992) who give a model estimate of 1.4-2.3 × 10¹⁴ mol/yr (i and j). The amounts of buried organic matter are also the same as those shown in Figure 14, the lowest given by Broecker (1970), the highest by Sarmiento and Sundquist (1992). (k) Coral reef formation is estimated (Kinsey and Hopley, 1991) at 0.0925×10^{14} mol/yr. (1) The net sedimentation of $CaCO_3$ by foruminifera, also taken for the complete oceans, is estimated at 0.120×10^{14} mol/yr (Broecker and Peng, 1987). (m) The imbalance is 2.17×10^{14} mol/yr, which is only 0.0076 ± 0.0004 % of the total CO_2 mass in the oceans, being 2.9×10^{18} mol (Tab. 3 B).