	GuanH ⁺	K ⁺	Na ⁺	Cl ⁻	Max. Diff
$\Delta G_{ m hyd,elec}$	-69.6	-85.1	-105.0	-83.4	35.5
$R_{ m Born}$	2.36	1.93	1.56	1.97	
$R_{ m Born-hyd}$	5.16	4.73	4.36	4.77	
$\Delta G_{\text{part,bare}} \text{ (water} \rightarrow \varepsilon = 1)$	69.6	85.1	105.0	83.4	35.5
$\Delta G_{\text{part,hyd}}(\text{water} \rightarrow \varepsilon = 1)$	31.8	34.7	37.6	34.4	5.8
$\Delta G_{\text{part,bare}} \text{ (water} \rightarrow \varepsilon = 2)$	34.3	42.0	51.8	41.2	17.5
$\Delta G_{\text{part,hyd}}(\text{water} \rightarrow \epsilon = 2)$	15.7	17.1	18.6	17.0	2.9

Table S3. Born energy estimates of membrane partitioning of bare and hydrated ions (in kcal/mol). Only electrostatic components, $\Delta G_{\rm hyd,elec}$, of ion hydration free energies from Table S2 were used in these calculations. Born radii, $R_{\rm Born}$, have been estimated from these free energies using Born expression for solvation and a dielectric constant of 78.46 for water. A hydrated radius, $R_{\rm Born-hyd}$, has been approximated as the Born radius plus 2.8 Å. The free energies for bare and hydrated ions partitioning into non-polarizable hydrocarbon (ε=1) and polarizable hydrocarbon (ε=2) are shown.