Table 2 Average net conversion rates (q_i) , expressed per Cmol of biomass (X), and carbon and redox recoveries of the steady-state aerobic glucose-limited chemostat cultivations of *E. coli* carried out at a dilution rate $D = 0.1 \, h^{-1}$ in two different chemostat systems.

Chemostat	q _{X'} a (mCmolX/	q _S (mmol/	q _{O2} (mmol/	q _{CO2} (mmol/	q _{bp} (mCmol/	Carbon recovery	Redox recovery
volume	CmolX h)	CmolX h)	CmolX h)	CmolX h)	CmolX h)	(%)	(%)
4 L	123.8 ± 4.9	-38.3 ± 2.9	-93.9 ± 3.4	97.1 ± 7.9	20.6 ± 1.7	96.1	97.4
0.5 L	121.9 ± 4.1	-39.0 ± 2.2	-96.6 ± 3.3	101.5 ± 6.0	19.3 ± 2.5	95.5	96.0

Note: In the table, 1 Cmol is the amount of compound containing 1 mol of carbon. q_X , biomass formation rate; q_{S} , glucose consumption rate; q_{O_2} , oxygen consumption rate; q_{CO_2} , carbon dioxide production rate; q_{bp} , by-product formation rate.

a $q_X = q_X + q_{bp}$ (see text)