Table 2 Average net conversion rates (q_i) , expressed per Cmol of biomass (X), and carbon and redox recoveries of the steady-state aerobic glucose-limited chemostat cultivations of *E. coli* carried out at a dilution rate $D = 0.1 \, h^{-1}$ in two different chemostat systems. | Chemostat | q _{X'} a (mCmolX/ | q _S (mmol/ | q _{O2} (mmol/ | q _{CO2} (mmol/ | q _{bp} (mCmol/ | Carbon recovery | Redox recovery | |-----------|----------------------------|-----------------------|------------------------|-------------------------|-------------------------|-----------------|----------------| | volume | CmolX h) | (%) | (%) | | 4 L | 123.8 ± 4.9 | -38.3 ± 2.9 | -93.9 ± 3.4 | 97.1 ± 7.9 | 20.6 ± 1.7 | 96.1 | 97.4 | | 0.5 L | 121.9 ± 4.1 | -39.0 ± 2.2 | -96.6 ± 3.3 | 101.5 ± 6.0 | 19.3 ± 2.5 | 95.5 | 96.0 | Note: In the table, 1 Cmol is the amount of compound containing 1 mol of carbon. q_X , biomass formation rate; q_{S} , glucose consumption rate; q_{O_2} , oxygen consumption rate; q_{CO_2} , carbon dioxide production rate; q_{bp} , by-product formation rate. a $q_X = q_X + q_{bp}$ (see text)